
KUBERNETES
ECOSYSTEM

STATET
H
E

OF THE

The New Stack
The State of the Kubernetes Ecosystem
Alex Williams, Founder & Editor-in-Chief

Core Team:
Bailey Math, AV Engineer
Benjamin Ball, Marketing Director
Gabriel H. Dinh, Executive Producer
Judy Williams, Copy Editor
Kiran Oliver, Associate Podcast Producer
Krishnan Subramanian, Technical Editor
Lawrence Hecht, Research Director
Scott M. Fulton III, Editor & Producer

3Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

TABLE OF CONTENTS
Introduction .. 4

Sponsors .. 8

THE STATE OF THE KUBERNETES ECOSYSTEM

An Overview of Kubernetes and Orchestration .. 9

Google Cloud: Plotting the Kubernetes Roadmap ...35

CNCF: Kubernetes 1.7 and Extensibility ...36

Map of the Kubernetes Ecosystem ...37

Codeship: Orchestration and the Developer Culture ..46

User Experience Survey...47

Twistlock: Rethinking the Developer Pipeline ..92

Buyer’s Checklist to Kubernetes ..93

Red Hat OpenShift: Cloud-Native Apps Lead to Enterprise Integration113

Issues and Challenges with Using Kubernetes in Production ...114

CoreOS: Maintaining the Kubernetes Life Cycle ...141

Roadmap for the Future of Kubernetes ...142

Closing ..172

KUBERNETES SOLUTIONS DIRECTORY

Kubernetes Distributions ..175

Tools and Services ...180

Relevant DevOps Technologies ...184

Relevant Infrastructure Technologies ..188

Disclosures ...191

4Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

The most fundamental conception is, as it seems to me,
the whole system, in the sense of physics, including not
only the organism-complex, but also the whole complex
of physical factors forming what we call the environment.
… Though the organism may claim our primary interest,
when we are trying to think fundamentally, we cannot
separate them from their special environment, with which
they form one physical system. It is the systems so formed
from which, from the point of view of the ecologist, are
the basic units of nature on the face of the earth. These
are ecosystems.

-Sir Arthur Tansley, “The Use and Abuse of Vegetational Concepts and
Terms,” 1935.

We use the term infrastructure more and more to refer to the support
system for information technology. Whatever we do with our applications
that creates value for our customers, or generates revenue for ourselves,
we’re supporting it now with IT infrastructure. It’s all the stuff under the
hood. It’s also the part of technology that, when it works right or as well as
we expect, we don’t stand in long lines to get a glimpse of, nor do we see
much discussion of it on the evening news.

In the stack of technologies with which we work today, there is a growing
multitude of layers that are under the hood. With modern
hyperconverged servers that pool their compute, storage and memory
resources into colossal pools, the network of heterogeneous
technologies with which those pools are composed is one layer of
physical infrastructure.

INTRODUCTION

5Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

INTRODUCTION

And in a modern distributed computing network, where even the cloud
can be only partly in the cloud, the support structure that makes
applications deployable, manageable, and scalable has become our
virtual infrastructure. Yes, it’s still under the hood, only it’s the hood at the
very top of the stack.

This book is about one very new approach to virtual infrastructure — one
that emerged as a result of Google’s need to run cloud-native applications
on a massively scaled network. Kubernetes is not really an operating
system, the way we used to think of Windows Server or the many
enterprise flavors of Linux. But in a growing number of organizations, it
has replaced the operating system in the minds of operators and
developers. It is a provider of resources for applications designed to run in
containers (what we used to call “Linux containers,” though whose form
and format have extended beyond Linux), and it ensures that the
performance of those applications meets specified service levels. So
Kubernetes does, in that vein, replace the operating system.

The title of this book refers to the Kubernetes ecosystem. This is an
unusual thing to have to define. The first software ecosystems were
made up of programmers, educators and distributors who could
mutually benefit from each other’s work. Essentially, that’s what the
Kubernetes ecosystem tries to be. It foresees an environment whose
participants leverage the open source process, and the ethics attached
to it, to build an economic system whose participants all benefit from
each other’s presence.

Only it’s hard to say whether Kubernetes actually is, or should be, at the
center of this ecosystem. Linux is no longer the focal point of the
ecosystem to which Linux itself gave rise. A distributed computing
environment is composed of dozens of components — some of them
open source, some commercial, but many of them both. Kubernetes may

http://www.thenewstack.io

6Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

INTRODUCTION

have given rise to one scenario where these components work in concert,
but even then, it’s just one component. And in a market where ideas are
thriving once again with far less fear of patent infringement, that
component may be substituted.

The purpose of this book is to give you a balance of comprehension with
conciseness, in presenting for you the clearest snapshot we can of the
economic and technological environment for distributed systems, and
Kubernetes’ place in that environment. We present this book to you with
the help and guidance of six sponsors, for which we are grateful:

• Cloud Native Computing Foundation (CNCF), a Linux Foundation
project; the steward of the Kubernetes open source project and its
many special interest groups; and also the steward of Fluentd,
linkerd, Prometheus, OpenTracing, gRPC, CoreDNS, containerd, rkt
and CNI.

• Codeship, a continuous integration platform provider that integrates
Docker and Kubernetes.

• CoreOS, producer of the Tectonic commercial platform, which
incorporates upstream Kubernetes as its orchestration engine,
alongside enterprise-grade features.

• Powered by Kubernetes, Google’s Container Engine on Google Cloud
Platform is a managed environment used to deploy containerized
applications.

• Red Hat, producer of the OpenShift cloud-native applications
platform, which utilizes Kubernetes as its orchestration engine.

• Twistlock, which produces an automated container security platform
designed to be integrated with Kubernetes.

http://www.thenewstack.io
http://bit.ly/2quBaL4
http://bit.ly/2ol8lzD
http://bit.ly/2uJMGYG
http://bit.ly/2x5VLZD
http://bit.ly/2x5VLZD
http://red.ht/2uJGuQo
http://bit.ly/2sOzS1A

7Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

INTRODUCTION

Portions of this book were produced with contributions from software
engineers at

• Kenzan, a professional services company that crafts custom IT
deployment and management solutions for enterprises.

We’re happy to have you aboard for this first in our three-volume series on
Kubernetes and the changes it has already made to the way businesses
are deploying, managing and scaling enterprise applications.

http://www.thenewstack.io
http://kenzan.com/

8Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

SPONSORS
We are grateful for the support of our ebook foundation sponsor:

And our sponsors for this ebook:

http://bit.ly/2quBaL4
http://bit.ly/2ol8lzD
http://bit.ly/2uJMGYG
http://bit.ly/2x5VLZD
http://red.ht/2uJGuQo
http://bit.ly/2sOzS1A

9Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF
KUBERNETES AND
ORCHESTRATION
by JANAKIRAM MSV and KRISHNAN SUBRAMANIAN

J
ust a few years ago, the most likely place you’d expect to find a func-
tional Linux container — whether it be the old cgroup style, or a full-
blown Docker or CNCF rkt container — was in an isolated, sandbox

environment on some developer’s laptop. Usually, it was an experiment. At
best, it was a workbench. But it wasn’t part of the data center.

Today, containers have emerged as the de facto choice for deploying new,
cloud-native applications in production environments. Within a three- to
four-year span of time, the face of modern application deployment has
transformed from virtual machine-based cloud platforms, to orchestrated
containers at scale.

In this chapter, we will discuss the role orchestrators (including
Kubernetes) play in the container ecosystem, introduce some of the major
orchestration tools in the market, and explain their various benefits.

How Kubernetes Got Here
The idea of containerization is not new. Some form of virtual isolation,

http://www.thenewstack.io
https://thenewstack.io/author/janakiram/
https://thenewstack.io/author/krishnan-subramanian/
https://coreos.com/rkt

10Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

whether for security or multi-tenancy purposes, has been bandied about
the data center since the 1970s.

Beginning with the advent of the chroot system call, first in Unix and later
in BSD, the idea of containerization has been part of enterprise IT folklore.
From FreeBSD Jails to Solaris Zones to Warden to LXC, containers have
been continuously evolving, all the while inching closer and closer to
mainstream adoption.

Well before containers became popular among developers, Google was
running some of its core web services in Linux containers. In a
presentation at GlueCon 2014, Joe Beda, one of Kubernetes’ creators,
claimed that Google launches over two billion containers in a week. The
secret to Google’s ability to manage containers at that scale lies with its
internal data center management tool: Borg.

Google redeveloped Borg into a general-purpose container orchestrator,
later releasing it into open source in 2014, and donating it to the Cloud
Native Computing Foundation (CNCF) project of the Linux Foundation in
2015. Red Hat, CoreOS, Microsoft, ZTE, Mirantis, Huawei, Fujitsu,
Weaveworks, IBM, Engine Yard, and SOFTICOM are among the key
contributors to the project.

After Docker arrived in 2013, the adoption level of containers exploded,
catapulting them into the spotlight for enterprises wanting to modernize
their IT infrastructure. There are four major reasons for this sudden
trend:

• Encapsulation: Docker solved the user experience problem for
containers by making it easier for them to package their applications.
Before Docker, it was painfully difficult to handle containers (with the
exception of Warden, which was abstracted out by the Cloud Foundry
platform).

http://www.thenewstack.io
https://speakerdeck.com/jbeda/containers-at-scale
https://research.google.com/pubs/pub43438.html

11Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

• Distribution: Ever since the advent of cloud computing, modern
application architectures have evolved to become more distributed.
Both startups and larger organizations, inspired by the emerging
methodologies and work ethics of DevOps, have in recent years turned
their attentions to microservices architecture. Containers, which are by
design more modular, are better suited for enabling microservices
than any other architecture to date.

• Portability: Developers love the idea of building an app and running
it anywhere — of pushing the code from their laptops to production,
and finding they work in exactly the same way without major
modifications. As Docker accumulated a wider range of tools, the
breadth and depth of functionality helped spur developers’ adoption
of containers.

• Acceleration: Although forms of containerization did exist prior to
Docker, their initial implementations suffered from painfully slow
startup times — in the case of LXC, several minutes. Docker reduced
that time to mere seconds.

Since its initial release in July 2015, Kubernetes has grown to become the
most popular container orchestration engine. Three of the top four public
cloud providers — Google, IBM and Microsoft — offered Containers as a
Service (CaaS) platforms based on Kubernetes at the time of this
publication. The fourth, Amazon, just joined the CNCF with its own plans
to support the platform. Although Amazon does have its own managed
container platform in the form of EC2 Container Service, AWS is known for
running the most Kubernetes clusters in production. Large enterprises
such as education publisher Pearson, the Internet of Things appliance
division of Philips, TicketMaster, eBay and The New York Times Company
are running Kubernetes in production.

http://www.thenewstack.io
https://aws.amazon.com/ecs/

12Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

What is Orchestration?
While containers helped increase developer productivity, orchestration
tools offer many benefits to organizations seeking to optimize their
DevOps and Ops investments. Some of the benefits of container
orchestration include:

• Efficient resource management.

• Seamless scaling of services.

• High availability.

• Low operational overhead at scale.

• A declarative model (for most orchestration tools) reducing friction for
more autonomous management.

• Operations-style Infrastructure as a Service (IaaS), but manageable like
Platform as a Service (PaaS).

Containers solved the developer productivity problem, making the
DevOps workflow seamless. Developers could create a Docker image, run
a Docker container and develop code in that container. Yet this
introduction of seamlessness to developer productivity does not translate
automatically into efficiencies in production environments.

Quite a bit more separates a production environment from the local
environment of a developer’s laptop than mere scale. Whether you’re
running n-tier applications at scale or microservices-based applications,
managing a large number of containers and the cluster of nodes
supporting them is no easy task. Orchestration is the component required
to achieve scale, because scale requires automation.

The distributed nature of cloud computing brought with it a paradigm shift

http://www.thenewstack.io

13Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

in how we perceive virtual machine infrastructure. The notion of “cattle vs.
pets” — treating a container more as a unit of livestock than a favorite
animal — helped reshape people’s mindsets about the nature of
infrastructure. Putting this notion into practice, containers at scale
extended and refined the concepts of scaling and resource availability.

The baseline features of a typical container orchestration platform include:

• Scheduling.

• Resource management.

• Service discovery.

• Health checks.

• Autoscaling.

• Updates and upgrades.

The container orchestration market is currently dominated by open
source software. At the time of this publication, Kubernetes leads the
charge in this department. But before we dig deeper into Kubernetes, we
should take a moment to compare it to some of the other major
orchestration tools in the market.

Docker Swarm
Docker, Inc., the company responsible for the most popular container
format, offers Docker Swarm as its orchestration tool for containers.

With Docker, all containers are standardized. The execution of each
container at the operating system level is handled by runc, an
implementation of the Open Container Initiative (OCI) specification.
Docker works in conjunction with another open source component,
containerd, to manage the life cycle of containers executed on a specific

http://www.thenewstack.io

14Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

FIG 1.1: The relationship between master and worker nodes in a typical Docker
Swarm configuration.

Docker Swarm: Swap, Plug, and Play

Node 1

Docker Daemon

Containers

Manager

Scheduler

Discovery
Service

Node 2

Docker Daemon

Containers

Node “n”

Docker Daemon

Containers

Discovery
Backend

Following Docker’s “batteries
included, but removable”
philosophy, several discovery
backends are supported,
including static files and IP
addresses, etcd, Consul and
ZooKeeper. Scheduler
strategies are pluggable as well.

Source: The New Stack

host by runc. Together, Docker, containerd, and the runc executor handle
the container operations on a host operating system.

Simply put, a swarm — which is orchestrated by Docker Swarm — is a
group of nodes that run Docker. Such a group is depicted in Figure 1.1.
One of the nodes in the swarm acts as the manager for the other nodes,
and includes containers for the scheduler and service discovery
component.

Docker’s philosophy requires standardization at the container level and
uses the Docker application programming interface (API) to handle
orchestration, including the provisioning of underlying infrastructure. In
keeping with its philosophy of “batteries included but removable,” Docker
Swarm uses the existing Docker API and networking framework without
extending them, and integrates more nicely with the Docker Compose

http://www.thenewstack.io

15Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

FIG 1.2: Apache Mesos, built for multifarious, high-performance workloads.

Apache Mesos: Built for High-Performance Workloads

Worker 1

Slave Daemon

Containers

Worker 2

Slave Daemon

Containers

Worker “n”

Slave Daemon

Containers

ZooKeeper Mesos Master

Master
Daemon

Standby Master

Master
Daemon

Standby Master

Master
Daemon

Source: The New Stack

tool for building multi-container applications. It makes it easier for
developers and operators to scale an application from five or six
containers, to hundreds.

NOTE: Docker Swarm uses the Docker API, making it fit easily into existing
container environments. Adopting Docker Swarm may mean an all-in bet
on Docker, Inc. Currently, Swarm’s scheduler options are limited.

Apache Mesos
Apache Mesos is an open source cluster manager that pre-dates Docker
Swarm and Kubernetes. Coupled with Marathon, a framework for
orchestrating container-based applications, it offers an effective
alternative to Docker Swarm and Kubernetes. Mesos may also use other
frameworks to simultaneously support containerized and
non-containerized workloads.

http://www.thenewstack.io

16Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

Mesos’ platform, depicted in Figure 1.2, shows the master/worker
relationship between nodes. In this scheme, distributed applications are
coordinated across a cluster by a component called the ZooKeeper. It’s
the job of this ZooKeeper to elect masters for a cluster, perhaps apportion
standby masters, and instill each of the other nodes with agents. These
agents establish the master/worker relationship. Within the master, the
master daemon establishes what’s called a “framework” that stretches,
like a bridge, between the master and worker nodes. A scheduler running
on this framework determines which of these workers is available for
accepting resources, while the master daemon sets up the resources to be
shared. It’s a complex scheme, but it has the virtue of being adaptable to
many types and formats of distributed payload — not just containers.

Unlike Docker Swarm, Mesos and Marathon each has its own API, making
the two of them much more complex to set up together, compared with
other orchestration tools. However, Mesos is much more versatile in
supporting Docker containers alongside hypervisor-driven virtual
machines such as VMware vSphere and KVM. Mesos also enables
frameworks for supporting big data and high-performance workloads.

NOTE: Apache Mesos is a perfect orchestration tool for mixed
environments with both containerized and non-containerized workloads.
Although Apache Mesos is stable, many say it presents a steeper learning
curve for container users.

Kubernetes
Originally an open source project launched by Google and now part of the
Cloud Native Computing Foundation (CNCF), Kubernetes makes managing
containers at web scale seamless with low operational overhead.

Kubernetes is not opinionated about the form or format of the container,
and uses its own API and command-line interface (CLI) for container

http://www.thenewstack.io

17Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

FIG 1.3: Kubernetes’ relationship between the master and its nodes, still known in
some circles as “minions.”

Kubernetes: Building on Architectural Roots

Minion 1

Kubelet

Containers

Master

API Server

Replication
Controller

Scheduler

Minion 2

Kubelet

Containers

Minion “n”

Kubelet

Containers

etc daemon

Source: The New Stack

orchestration. It supports multiple container formats, including not just
Docker’s but also rkt, originally created by CoreOS, now a CNCF-hosted
project. The system is also highly modular and easily customizable,
allowing users to pick any scheduler, networking system, storage system,
and set of monitoring tools. It starts with a single cluster, and may be
extended to web scale seamlessly.

The six key features of an orchestrator that we mentioned earlier apply to
Kubernetes in the following ways:

• Scheduling: The Kubernetes scheduler ensures that demands for
resources placed upon the infrastructure may be met at all times.

• Resource management: In the context of Kubernetes, a resource is a
logical construct that the orchestrator can instantiate and manage,

http://www.thenewstack.io

18Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

such as a service or an application deployment.

• Service discovery: Kubernetes enables services sharing the system
together to be discoverable by name. This way, the pods containing
services may be distributed throughout the physical infrastructure
without having to retain network services to locate them.

• Health check: Kubernetes utilizes functions called “liveness probes”
and “readiness probes” to provide periodic indications to the
orchestrator of the status of applications.

• Autoscaling: With Kubernetes, the horizontal pod autoscaler
automatically generates more replicas when it appears the designated
CPU resources for a pod may be underutilized.

• Updates/upgrades: An automated, rolling upgrade system enables
each Kubernetes deployment to remain current and stable.

NOTE: Kubernetes is built for web scale by a very vibrant community. It
provides its users with more choices for extending the orchestration
engine to suit their needs. Since it uses its own API, users more familiar
with Docker will encounter somewhat of a learning curve.

Kubernetes Architecture
A contemporary application, packaged as a set of containers, needs an
infrastructure robust enough to deal with the demands of clustering and
the stress of dynamic orchestration. Such an infrastructure should provide
primitives for scheduling, monitoring, upgrading and relocating containers
across hosts. It must treat the underlying compute, storage, and network
primitives as a pool of resources. Each containerized workload should be
capable of taking advantage of the resources exposed to it, including CPU
cores, storage units and networks.

http://www.thenewstack.io

19Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

FIG 1.4: The resource layers of a system, from the perspective of the container orches-
tration engine.

Container Orchestration Engine

Source: Janakiram MSV

Physical Infrastructure

Cluster Manager / Orchestration Engine

VM VM VM VM VM VM VM

Cluster n

Application

Cluster 1 Cluster 2

ApplicationApplicationApplication

Cluster 3

ApplicationApplication

Kubernetes is an open source cluster manager that abstracts the
underlying physical infrastructure, making it easier to run containerized
applications at scale. An application, managed through the entirety of its
life cycle by Kubernetes, is composed of containers gathered together as a
set and coordinated into a single unit. An efficient cluster manager layer
lets Kubernetes effectively decouple this application from its supporting
infrastructure, as depicted in Figure 1.4. Once the Kubernetes
infrastructure is fully configured, DevOps teams can focus on managing the
deployed workloads instead of dealing with the underlying resource pool.

The Kubernetes API may be used to create the components that serve as
the key building blocks, or primitives, of microservices. These components
are autonomous, meaning that they exist independently from other
components. They are designed to be loosely coupled, extensible and

http://www.thenewstack.io

20Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

adaptable to a wide variety of workloads. The API provides this
extensibility to internal components, as well as extensions and containers
running on Kubernetes.

Pod
The pod serves as Kubernetes’ core unit of workload management, acting
as the logical boundary for containers sharing the same context and
resources. Grouping related containers into pods makes up for the
configurational challenges introduced when containerization replaced
first-generation virtualization, by making it possible to run multiple
dependent processes together.

Each pod is a collection of one or more containers that use remote
procedure calls (RPC) for communication, and that share the storage and
networking stack. In scenarios where containers need to be coupled and
co-located — for instance, a web server container and a cache container
— they may easily be packaged in a single pod. A pod may be scaled out
either manually, or through a policy defined by way of a feature called
Horizontal Pod Autoscaling (HPA). Through this method, the number of
containers packaged within the pod is increased proportionally.

Pods enable a functional separation between development and
deployment. While developers focus on their code, operators can
concentrate on the broader picture of which related containers may be
stitched together into a functional unit. The result is the optimal amount
of portability, since a pod is just a manifest of multiple container images
managed together.

Service
The services model in Kubernetes relies upon the most basic, though
most important, aspect of microservices: discovery.

A single pod or a replica set (explained in a moment) may be exposed to

http://www.thenewstack.io

21Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

internal or external clients via services, which associate a set of pods with
a specific criterion. Any pod whose labels match the selector will
automatically be discovered by the service. This architecture provides a
flexible, loosely-coupled mechanism for service discovery.

When a pod is created, it is assigned an IP address accessible only within
the cluster. But there is no guarantee that the pod’s IP address will remain
the same throughout its life cycle. Kubernetes may relocate or
re-instantiate pods at runtime, resulting in a new IP address for the pod.

To compensate for this uncertainty, services ensure that traffic is always
routed to the appropriate pod within the cluster, regardless of the node on
which it is scheduled. Each service exposes an IP address, and may also
expose a DNS endpoint, both of which will never change. Internal or
external consumers that need to communicate with a set of pods will use
the service’s IP address, or its more generally known DNS endpoint. In this
way, the service acts as the glue for connecting pods with other pods.

Service Discovery
Any API object in Kubernetes, including a node or a pod, may have
key-value pairs associated with it — additional metadata for identifying
and grouping objects sharing a common attribute or property. Kubernetes
refers to these key-value pairs as labels.

A selector is a kind of criterion used to query Kubernetes objects that
match a label value. This powerful technique enables loose coupling of
objects. New objects may be generated whose labels match the selectors’
value. Labels and selectors form the primary grouping mechanism in
Kubernetes for identifying components to which an operation applies.

A replica set relies upon labels and selectors for determining which pods
will participate in a scaling operation. At runtime, pods may be scaled by
means of replica sets, ensuring that every deployment always runs the

http://www.thenewstack.io

22Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

FIG 1.5: While a Kubernetes cluster focuses on pods, they’re represented to the out-
side world by services.

How Services in a Cluster Map to Functions in Pods

Source: https://kubernetes.io/docs/concepts/services-networking/service/

Kubernetes
Cluster

node 1

node 2

node 3

node “n”

Red
Pod

Red
Pod

Yellow
Pod

Green
Pod

Red
Pod

Red
Pod

Yellow
Pod

Yellow
Pod

Yellow
Pod

Green
Pod

Green
Pod

Green
PodYellow

Service

Red
Service

Green
Service

desired number of pods. Each replica set maintains a pre-defined set of
pods at all times.

Any pod whose label matches the selector defined by the service will be
exposed at its endpoint. When a scaling operation is initiated by a replica
set, new pods created by that operation will instantly begin receiving
traffic. A service then provides basic load balancing by routing traffic
across matching pods.

Figure 1.5 depicts how service discovery works within a Kubernetes
cluster. Here, there are three types of pods, represented by red, green and
yellow boxes. A replication controller has scaled these pods to run
instances across all the available nodes. Each class of pod is exposed to
clients through a service, represented by colored circles. Assuming that
each pod has a label in the form of color=value, its associated service

http://www.thenewstack.io

23Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

Kubernetes Architecture

Source: Janakiram MSV

CLI
Command

Line
Interface

API

UI
User

Interface
Node 1

Node 2

Node 3

Node n

Image Registry

Kubernetes
Master

would have a selector that matches it.

When a client hits the red service, the request is routed to any of the pods
that match the label color=red. If a new red pod is scheduled as a part
of the scaling operation, it is immediately discovered by the service, by
virtue of its matching label and selector.

Services may be configured to expose pods to internal and external
consumers. An internally exposed service is available through a ClusterIP
address, which is routable only within the cluster. Database pods and other
sensitive resources that need not have external exposure are configured for
ClusterIP. When a service needs to become accessible to the outside
world, it may be exposed through a specific port on every node, which is
called a NodePort. In public cloud environments, Kubernetes can provision
a load balancer automatically configured for routing traffic to its nodes.

FIG 1.6: The master’s place in Kubernetes architecture.

http://www.thenewstack.io

24Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

FIG 1.7: The master’s place in Kubernetes architecture.

Kubernetes Master

API Server Scheduler

etcd

Controller

Kubernetes
Master

Source: Janakiram MSV

CLI
Command

Line
Interface

API

UI
User

Interface

Node 1

Node 2

Node 3

Node n

Image Registry

Master
Like most modern distributed computing platforms, Kubernetes utilizes a
master/worker architecture. As Figure 1.6 shows, the master abstracts the
nodes that run applications from the API with which the orchestrator
communicates.

The master is responsible for exposing the Kubernetes API, scheduling the
deployments of workloads, managing the cluster, and directing
communications across the entire system. As depicted in Figure 1.6, the
master monitors the containers running in each node as well as the health
of all the registered nodes. Container images, which act as the deployable
artifacts, must be available to the Kubernetes cluster through a private or
public image registry. The nodes that are responsible for scheduling and
running the applications access the images from the registry.

http://www.thenewstack.io

25Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

As Figure 1.7 shows, the Kubernetes master runs the following
components that form the control plane:

etcd
Developed by CoreOS, etcd is a persistent, lightweight, distributed,
key-value data store that maintains the cluster’s configuration data. It
represents the overall state of the cluster at any given point of time, acting
as the single source of truth. Various other components and services
watch for changes to the etcd store to maintain the desired state of an
application. That state is defined by a declarative policy — in effect, a
document that states the optimum environment for that application, so
the orchestrator can work to attain that environment. This policy defines
how the orchestrator addresses the various properties of an application,
such as the number of instances, storage requirements and resource
allocation.

API Server
The API server exposes the Kubernetes API by means of JSON over HTTP,
providing the REST interface for the orchestrator’s internal and external
endpoints. The CLI, the web UI, or another tool may issue a request to the
API server. The server processes and validates the request, and then
updates state of the API objects in etcd. This enables clients to configure
workloads and containers across worker nodes.

Scheduler
The scheduler selects the node on which each pod should run based on
its assessment of resource availability, and then tracks resource utilization
to ensure the pod isn’t exceeding its allocation. It maintains and tracks
resource requirements, resource availability, and a variety of other user-
provided constraints and policy directives; for example, quality of service
(QoS), affinity/anti-affinity requirements and data locality. An operations
team may define the resource model declaratively. The scheduler

http://www.thenewstack.io

26Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

interprets these declarations as instructions for provisioning and
allocating the right set of resources to each workload.

Controller
The part of Kubernetes’ architecture which gives it its versatility is the
controller, which is a part of the master. The controller’s responsibility is to
ensure that the cluster maintains the desired state of configuration of
nodes and pods all the time. By desired state we’re referring to the
balance of the utilized resources declared and requested by the pods’
YAML configuration files, against the current demands and constraints of
the system.

The controller maintains the stable state of nodes and pods by constantly
monitoring the health of the cluster, and the workloads deployed on that
cluster. For example, when a node becomes unhealthy, the pods running
on that node may become inaccessible. In such a case, it’s the job of the
controller to schedule the same number of new pods in a different node.
This activity ensures that the cluster is maintaining the expected state at
any given point of time.

The Kubernetes controller plays a crucial role in running containerized
workloads in production, making it possible for an organization to deploy
and run containerized applications that go well beyond the typical
stateless and scale-out scenarios. The controller manager oversees the
core Kubernetes controllers:

• The ReplicationController (ReplicaSet) maintains the pod
count of a specific deployment within the cluster. It guarantees that a
given number of pods are running all the time in any of the nodes.

• StatefulSet is similar to replica set, but for pods that need
persistence and a well-defined identifier.

http://www.thenewstack.io
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
http://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

27Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

• DaemonSet ensures that one or more containers packaged as a pod
are running in each node of the cluster. This is a special type of
controller that forces a pod to run on every node. The number of pods
running as a part of DaemonSet is directly proportional to the number
of nodes.

• The job and cron job controllers handle background processing and
batch processing.

These controllers communicate with the API server to create, update and
delete the resources that they manage, such as pods and service
endpoints.

Mission critical applications require higher levels of resource availability.
Through the use of a replica set, Kubernetes ensures that a predefined
number of pods are running all the time. But these pods are stateless and
ephemeral. It’s very difficult to run stateful workloads, such as a database
cluster or a big data stack, for the following reasons:

• Each pod is assigned an arbitrary name at runtime.

• A pod may be scheduled on any available node unless an affinity rule
is in effect, in which case the pod may only be scheduled on nodes
that have a specific label or labels specified in the rule.

• A pod may be restarted and relocated at any point of time.

• A pod may never be referenced directly by its name or IP address.

Starting with version 1.5, Kubernetes introduced the concept of stateful
sets (represented by the StatefulSets object) for running highly
available workloads. A stateful pod participating in a stateful set will have
the following attributes:

• A stable host name that will always be resolved by the DNS.

http://www.thenewstack.io
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

28Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

FIG 1.8: An exploded view shows the multitude of components in a Kubernetes node.

Kubernetes Node

Node 1, 2, 3, n

kube-proxy FluentdkubeletDocker

Image Registry

Supervisord

Optional Add-ons: DNS, UI, etc.

Pod

Pod
Pod

Pod

Pod

Pod

Pod

Pod
Pod

Pod

Source: Janakiram MSV

Kubernetes
Master

• An ordinal index number to represent the sequential placement of the
pod in the replica set.

• A stable storage that is linked to the host’s name and ordinal index
number.

The stable host name with its ordinal index number enables one pod to
communicate with another in a predictable and consistent manner. This is
the fundamental difference between a stateless pod and stateful pod.

Node
The node is the workhorse of the Kubernetes cluster, responsible for
running containerized workloads; additional components of logging,
monitoring and service discovery; and optional add-ons. Its purpose is to
expose compute, networking and storage resources to applications. Each
node includes a container runtime, such as Docker or rkt, plus an agent

http://www.thenewstack.io

29Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

that communicates with the master. A node may be a virtual machine (VM)
running in a cloud or a bare metal server inside the data center.

Each node, as shown in Figure 1.8, contains the following:

Container Runtime
The container runtime is responsible for managing the life cycle of each
container running in the node. After a pod is scheduled on the node, the
runtime pulls the images specified by the pod from the registry. When a
pod is terminated, the runtime kills the containers that belong to the pod.
Kubernetes may communicate with any OCI-compliant container runtime,
including Docker and rkt.

Kubelet
A kubelet is a component that ensures all containers on a node are
healthy. It interfaces with the container runtime to perform operations
such as starting, stopping and maintaining containers.

Each kubelet also monitors the state of pods. When a pod does not meet
the desired state as defined by the replication controller, it may be
restarted on the same node. The node’s status is transmitted to the
master every few seconds via heartbeat messages. If the master detects a
node failure, the replication controller observes this state change and
schedules the pods on other healthy nodes.

Kube-proxy
The kube-proxy component is implemented as a network proxy and a load
balancer. It routes traffic to the appropriate container based on its IP address
and the port number of an incoming request. It also takes advantage of
OS-specific networking capabilities by manipulating the policies and rules
defined through iptables. Each kube-proxy may be integrated with
container-specific networking layers such as Flannel and Calico.

http://www.thenewstack.io

30Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

FIG 1.9: Headless services provide connection points between stateful databases and
services.

How Headless Services Attach to Functions

Source: https://kubernetes.io/docs/concepts/services-networking/service/

RDBMS

NoSQL

Cache

node 1

node 2

node 3

Pod Pod

Pod Pod

Pod Pod

Pod

Pod

Pod

Pod

Pod

Pod

Headless
Service

Ingress
Service

Headless
Service

Headless
Service

Kubernetes
Cluster

You can use something called a headless service to direct pods to external
services such as cache, object storage and databases. As depicted in
Figure 1.9, this is essentially the same thing as a service, but without the
need for a kube-proxy or load balancing. A call to a headless service
resolves to the IP address of the cluster that the service specifically
selects. This way, you can employ custom logic for selecting the IP
address, bypassing the normal route.

Logging Layer
The orchestrator makes frequent use of logging as a means for gathering
resource usage and performance metrics for containers on each node,
such as CPU, memory, file and network usage. The Cloud Native
Computing Foundation produces what it calls a unified logging layer for
use with Kubernetes or other orchestrators, called Fluentd. This

http://www.thenewstack.io

31Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

component produces metrics that the Kubernetes controller master
needs to keep track of available cluster resources, as well as the health of
the overall infrastructure.

Add-Ins
Kubernetes supports additional services in the form of add-ins. These
optional services, such as DNS and dashboard, are deployed like other
applications but integrated with other core components on the node such
as Fluentd and kube-proxy. For example, the dashboard add-in pulls the
metrics from Fluentd to display rich visualizations of resource utilization.
DNS add-in augments kube-proxy through name resolution.

Distinguishing Kubernetes Platforms
from One Another
Ever since cloud computing became the norm in modern enterprises,
systems architects have been confused about the right balance of
abstraction that a cloud platform should employ. The right balance would
enable operational efficiencies, while at the same time improving
developer productivity.

In the early days of cloud computing, the virtual machine was the basic
unit of compute. End users were forced to select between so-called IaaS+
platforms like AWS, and PaaS platforms like Heroku, Engine Yard, Cloud
Foundry and OpenShift. The level of abstraction determined how much
direct control a developer would have over the platform’s underlying
infrastructure. Greater abstraction would mean the developer would need
to use the platform’s API to push code.

Now that containers are emerging as the basic unit of compute, users are
confronting similar questions about the right abstraction level for their
needs. As the table below shows, there are many different types of

http://www.thenewstack.io
http://wideopentech.com/blog/2016/07/08/iaas-middle-ground-iaas-paas/

32Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

Kubernetes distributions in the container orchestration realm. The needs
of the user — including the working environment, the availability of
expertise, and the specific use case the user is dealing with — determine
whether Containers as a Service (CaaS) or an abstracted platform is the
right choice. No single, straightforward framework exists to guarantee a
perfect decision. But Table 1.1 may be a start.

Types of Distributions
Description Community

Supported
Vendor Distro
(no value add)

Vendor Distro
(with value add)

App Platforms /
PaaS

Developer Abstraction No No No Yes

Target User Cluster Operator Cluster Operator / IT Cluster Operator / IT Cluster Operator / IT
/ Developers

Usage Maturity Kicking tires / PoC Production Production Production

Developer Tools /
Middleware

No No Maybe Yes

DevOps Tools No No Maybe Yes

Vanilla Distribution Yes Maybe No No

Control Over
Environment

Yes Yes Yes No

Benefits Resource
Optimization

Ops Productivity Ops Productivity Ops and Developer
Productivity

Enterprise Support No, Community
Support only

Yes Yes Yes

TABLE 1.1: A comparison between the types of Kubernetes distributions, ranging
from fully community-produced to fully commercial.

A CaaS platform includes the Kubernetes project, and also packages
additional tooling needed for its deployment and management. An
abstracted platform, on the other end of the scale, goes well beyond the
operational efficiencies offered by CaaS, focusing on increased developer
productivity. With CaaS, developers are required to package their own
code in a container so that it may be deployed in a cluster. Even though
Docker-based containers address this packaging problem on developers’

http://www.thenewstack.io

33Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

behalf, the abstracted application platforms can completely encapsulate
the process of building container images internally — automating the
process, as opposed to hand-holding the developer along the way. The
developer’s task stops once she has pushed her code to a source control
tool like GitHub, or to a continuous integration / continuous delivery (CI/
CD) system like Jenkins, and the platform does the rest.

By design, CaaS is closely aligned with the Kubernetes open source
project, helping IT to run and manage containers at scale. But a CaaS
model expects developers to take care of all of their applications’
dependencies. From a cultural perspective, the DevOps model follows a
culture of Dev and Ops working together with cross-functional knowledge.
One of the things both teams have knowledge of, in this scenario, is the
long list of dependencies.

Abstracted application platforms use Kubernetes as the core
component, helping IT run containers at scale with less overhead than
CaaS. Developers need not worry about managing runtimes or any
application dependencies. Instead, they can focus on writing application
code and pushing it to a source control repository or CI/CD system.
Abstracted platforms enhance developer productivity, while taking away
control over the underlying components. You can say DevOps is still at
the center of this model. But with abstractions, there is no need for this
cross-functional knowledge — it becomes redundant busy work.
Developers need not understand the underpinnings of Kubernetes or
how to manage it.

As we mentioned earlier, there is no straightforward framework for
selecting between CaaS and abstracted platforms. Your choice depends
on what your organization wants to achieve for developer productivity
and the specific use cases you foresee for your organization.

http://www.thenewstack.io

34Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

AN OVERVIEW OF KUBERNETES AND ORCHESTRATION

Getting Started with Kubernetes
Here are some ways to get started with Kubernetes:

1. Sign up with a hosted CaaS service.

2. Download and install a single-processor setup for testing Kubernetes
on a single PC, such as CoreOS’ Tectonic Sandbox.

3. Set up a local cluster by cloning the Kubernetes GitHub repo.

4. Try out a Kubernetes cluster for yourself right away with Play with
Kubernetes, which gives you a full Kubernetes environment you can
run from your browser.

Public cloud providers, including IBM Bluemix, Google Cloud Platform and
Microsoft Azure, offer hosted Kubernetes as a service. Through free credits
and trial offers, it’s easy to spin up a small Kubernetes cluster just for
testing the waters. Refer to the documentation of the service of your
choice for details on deploying your first application in Kubernetes.

Minikube is a single-node Kubernetes cluster that’s ideal for learning and
exploring the environment. It is strongly recommended for beginners with
no past experience.

On a more powerful host machine, Kubernetes may be configured as a
multi-node cluster based on Vagrant. The GitHub repo has instructions on
setting up the Vagrant boxes.

http://www.thenewstack.io
http://coreos.com/tectonic/sandbox
http://labs.play-with-k8s.com/
http://labs.play-with-k8s.com/

35Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM 35

In this podcast, Google assembled three of the
members who oversee and contribute to the
Roadmap project. In a containerized environment,
there are still operating systems, and we still call

most of the units that serve as vehicles for processes “Linux
containers.” But inter-application communication (IAC) is no longer
something that is facilitated by an underlying OS platform. As an
orchestrator, Kubernetes facilitates the networking that takes place
between components. How that facilitation will take place from
here on out is a key topic of conversation for the people who
assemble the Kubernetes Roadmap. Listen to the Podcast.

Aparna Sinha manages the product group at Google for Kubernetes.
She started and co-leads the Kubernetes community PM SIG, which
maintains the open source roadmap, and is a member of the CNCF

Governing Board.

PLOTTING THE
KUBERNETES ROADMAP

Eric Brewer leads Google’s compute infrastructure design, including
Google Cloud Platform. As the long-time professor of computer
science at the University of California, Berkeley, he has led projects

on scalable servers, network infrastructure, IoT and the CAP Theorem.

Ihor Dvoretskyi is an ambassador with CNCF, a product manager
and OpenStack SIG head with the Kubernetes Community, and
program manager at Mirantis. His focus has been on tight integration

between Kubernetes and OpenStack.

http://bit.ly/2x5VLZD
https://soundcloud.com/thenewstackmakers/the-kubernetes-roadmap
https://soundcloud.com/thenewstackmakers/the-kubernetes-roadmap

36Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM 36

One of the people without whom Kubernetes
would not exist, and perhaps the whole notion of
orchestration would never have come to fruition,
does not believe Kubernetes is truly at the center

of the emerging ecosystem. Yes, we call it a “Kubernetes
Ecosystem,” but Google’s Tim Hockin explained that he sees the
platform as a hub for a greater kind of ecosystem to come.

“Part of what Kubernetes really set out to do at the beginning,” said
Hockin, “was to provide the hub of ecosystems, plural. There’s the
network ecosystem, the storage ecosystem and the security
ecosystem.”

In this podcast, learn how the platform’s new extensibility model
could enable integration with security policy, using whatever policy
model you happen to have on hand. Listen to the Podcast.

Tim Hockin is a Principal Software Engineer at Google, where he
works on Kubernetes and Google Container Engine (GKE). He is a
co-founder of the Kubernetes project, and is responsible for topics

including networking, storage, node, federation, resource isolation and cluster
sharing.

KUBERNETES 1.7
AND EXTENSIBILITY

http://bit.ly/2quBaL4
https://soundcloud.com/thenewstackmakers/kubernetes-17-and-extensibility
https://soundcloud.com/thenewstackmakers/kubernetes-17-and-extensibility

37Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE
KUBERNETES
ECOSYSTEM
by SCOTT M. FULTON III

T
he term ecosystem was first applied to computing in the late
1970s, as an analogy to explain what was happening to the
emerging field of Apple II software. Up to that point in time, nearly

all software was exclusively distributed by the manufacturer of the
computer for which it was written. But Apple chose to accept the
presence of independent software vendors, some of which packaged
their floppy diskettes in zipper bags with instructions printed on colored
construction paper. When the computer manufacturer realized the
relationships between all the parties, including itself, were mutually
beneficial to everyone, Apple enabled the first ecosystem in our little
hemisphere.

Nearly four decades later, it’s the goal of most every computing platform
to generate its own ecosystem — a kind of economy that coalesces
around a product, where the people who create things that support that
product, are in turn supported by it. The ethic of many of the leaders in
the Kubernetes community is that the imposition of exclusivity is the
antithesis of support.

http://www.thenewstack.io
https://thenewstack.io/author/scott/

38Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE KUBERNETES ECOSYSTEM

No Point in Reinventing the Wheel
“Kubernetes is the platform. Kubernetes should never take an opinionated
position about which monitoring solution you use,” said Tim Hockin,
Google’s principal software engineer. “We should be, and have been —
and I’m committed to continuing to be — completely neutral when it
comes to such decisions. I think it would be untenable to go to potential
adoptees, and say, ‘Please not only install this Kubernetes thing (which is
sort of a handful on its own) but also change all of your monitoring over to
Prometheus, and change all of your logging over to Fluentd — and oh, by
the way, you also have to use gRPC and OpenTracing.’ There’s no way that
could work.

“Kubernetes is a pluggable system, very much on purpose,” Hockin
continued, “so that you can integrate multiple solutions into it. Now, being
that things like Prometheus are part of the family, I would hope that
people would look at Prometheus as sort of the cloud-native way of doing
things. And if they don’t have an existing monitoring solution, they might
look at the other things the CNCF [Cloud Native Computing Foundation] is
doing, and consider those technologies. But I really mean ‘consider,’ and
not, ‘be forced to adopt.’”

The CNCF does produce its own ecosystem map, called the Cloud Native
Landscape. Docker is easily locatable on this map, and one can find
Kubernetes seated at the “Scheduling & Orchestration” table along with
Docker Swarm, Mesos, Nomad, and Amazon Elastic Container Service
(now EC2 Container Service).

But our purpose with this particular chapter is to chart the state of
evolution, at the time of this publication, of the ecosystem that has thus
far coalesced specifically around Kubernetes. One can make a potent
argument that the container ecosystem (about which The New Stack has

http://www.thenewstack.io
http://www.hockin.org/~thockin/
https://prometheus.io/
https://www.fluentd.org/
https://grpc.io/
http://opentracing.io/
https://github.com/cncf/landscape#current-version
https://github.com/cncf/landscape#current-version

39Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE KUBERNETES ECOSYSTEM

already published an ebook) was catalyzed almost entirely by Docker.
Though many organizations claim to have contributed to the concept of
compartmentalized namespaces or portable workloads, only one is easily
recognizable by its big, blue whale logo.

Kubernetes did not really invent workload scheduling and orchestration.
But it did premiere a unique approach to the concept that enabled inter-
process communication and scalability at a level, and with an ease of
implementation, that Docker did not accomplish on its own.

For a plurality of enterprises to accept Kubernetes as a platform and, to a
broader extent, as a methodology — as opposed to just another tool — it
truly does need to be perceived as the progenitor of a broad set of
interchangeable tools. Tim Hockin’s point is that the platform cannot
afford to be perceived as attempting to institute a single way of work,
through a single toolset. It may as well be an operating system, with
certified software and licensed extension libraries, if it intended to do that.

Laura Frank, the director of engineering at CI/CD platform provider
Codeship, takes this idea a step further: She believes the focal point of an
ecosystem cannot expect developers to fuel it first through their own
homemade tools, before they can reap the benefits from it.

“My pragmatism is always to use a tool that exists, versus trying to write
my own,” Frank told us. “To be very honest, with the rolling-update, self-
healing nature of Kubernetes, I couldn’t write a better solution. I think
there’s no point in trying to reinvent the wheel. I think it’s fine to rely on
Kubernetes for things like that, instead of trying to automate them, or
even write them yourself. I think it’s great to rely on tools — and especially
open source tools, because I think the point about, ‘You’re not Google; you
don’t have Google-sized problems,’ isn’t really that valid anymore.

“Kubernetes has such a rich ecosystem of open source community around

http://www.thenewstack.io
https://thenewstack.io/ebooks/
https://twitter.com/rhein_wein?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

40Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE KUBERNETES ECOSYSTEM

it, that it is not just representative of one company’s interests,” she
continued. “It’s really a collaboration across many different industries, and
sizes of engineering teams and organizations coming together, to create
something that works together the best way that it can, for the largest
number of use cases that it can.”

The DevOps Pipeline
Figure 2.1 presents our depiction of the present state of the Kubernetes
ecosystem.

It is a little lopsided. That’s not an accident, and no, those omissions are
not because we rushed this ebook to press. While many are quick to jump
on the metaphor train and declare Kubernetes a complete DevOps life
cycle management framework, when we partition the DevOps pipeline so
that developer-centered tools gravitate to the left, and operations-
centered tools to the right, the propensity of tools in the ecosystem lean
to the right.

This is not some sort of ecosystem defect. One does not actually create
and deploy a microservice with Kubernetes, the way one does not create
an egg and deploy it with a skillet. There are plenty of independent
development environments for that purpose. And there is Docker for
packaging the product of that development in portable containers. The
Kubernetes community is working on a toolset called CRI-O for staging
pre-existing containers in a standard engine. But it does not take the place
of Docker; CRI-O does not create container images.

The items we listed under the “Create” column of the pipeline include
Telepresence, a local development environment for building microservices
for staging in Kubernetes; as well as the rkt and containerd runtimes, both
of which are now CNCF projects. Codeship enters the picture at the

http://www.thenewstack.io
https://github.com/kubernetes-incubator/cri-o
https://www.telepresence.io/
https://coreos.com/rkt
https://containerd.io/

41Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE KUBERNETES ECOSYSTEM

Develo
pment Operations

DevOps Pipeline for Kubernetes

Source: The New Stack

CNCF
docker/containerd

CNCF
kubernetes/helm

kubernetes-incubator/

bootkube
MICROSOFT
Azure/acs-engine

coreos/matchbox

weaveworks/

kubedif

MICROSOFT
deis/workflow

kz8s/tack CNCF
kubernetes/dashboard

CNCF
kubernetes/

kubernetes-anywhere

CNCF
kubernetes/heapster

google/cadvisor

Monitor
ReleaseVerify

Create
Plan

Package Configure

Kubernetes Distributions

Infrastructure, Core Backend Services, Security

TELEPRESENCE

by

Huawei-PaaS/

CNI-Genie

weaveworks/weave

FIG 2.1: Today’s Kubernetes DevOps pipeline.

http://www.thenewstack.io

42Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE KUBERNETES ECOSYSTEM

“Package” and “Release” stages of the pipeline, when you’re integrating
microservices with continuous deployment patterns.

In the “Configure” column is where the management platforms come in:
the systems that are not end-to-end life cycle management systems like
OpenShift, but are nonetheless presented to customers as value-adds that
go above and beyond what Kubernetes offers by itself. Then the “Monitor”
column shows the many logging, oversight, and monitoring tools and
platforms that may either be absorbed into the Kubernetes system (for
instance, the Fluentd unified logging layer) or that plug into Kubernetes
from the outside (e.g., New Relic APM, AppDynamics, Dynatrace, Sysdig,
VMware Wavefront). Many of these monitoring platforms pre-date
Kubernetes by several years, though they have certainly been brought into
the platform’s sphere of influence.

At the base of the chart in Figure 2.1 are the infrastructure services that
may support Kubernetes, such as the Quay container deployment
platform, Nuage Networks’ SDN, and the Twistlock container security
platform.

“There’s really a few different, fundamental differences between securing
containers and securing [virtual machines],” said Twistlock Chief
Technology Officer John Morello. “There’s a lot of misplaced writings out
there that portray containers as the next evolution of virtual machines.
And while they definitely share some similarities, the use cases and just
the core technology is dramatically different. If you go into it thinking that
the container is a sort of miniature virtual machine, you’re going to come
into it with a set of biases and assumptions that really are not correct.”

Morello observes that a containerized, distributed application is an
abundance of small entities — a plurality of objects. By contrast, from the
developer’s perspective, the application under construction may still be a

http://www.thenewstack.io
https://newrelic.com/application-monitoring
https://www.appdynamics.com/
https://www.dynatrace.com/
https://www.sysdig.org/
https://www.vmware.com/company/acquisitions/wavefront.html
https://quay.io/
http://www.nuagenetworks.net/
https://www.twistlock.com/2017/01/26/kubernetes-cluster-security/
https://www.twistlock.com/about-us/team/john-morello/

43Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE KUBERNETES ECOSYSTEM

Community
Supported

Vendor Distro
(no value add)

Vendor Distro
(with value add)

App Platforms /
PaaS

Kubernetes Distributions

Source: The New Stack, building on the categorization work of Joseph Jacks and other community members.

CNCF
kubernetes/kops

vmware/photon-controller

CANONICAL
juju-solutions/

bundle-canonical-kubernetes

samsung-cnct/k2

pivotal.io/kubo

tenxcloud.com

FusionStage

FIG 2.2: The classes of Kubernetes platform distributions.

single entity. And this may explain some of the lopsidedness in the
appearance of today’s Kubernetes DevOps pipeline: By the time the
application gets to the production stage, it becomes less of a construct
and more of a population.

Levels of Support
Figure 2.2 lists the available packages and services through which you are
able to obtain, or purchase, or purchase support for, Kubernetes.

We divide the classes as follows:

• Community Supported distributions are the free and open source
packages with which you can deploy the platform yourself and give it
a go. Minikube is a genuine Kubernetes environment for local,
experimental deployments on a single computer.

http://www.thenewstack.io
https://github.com/kubernetes/minikube

44Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE KUBERNETES ECOSYSTEM

• Vendor Distro (no value add) shows companies that deliver
software solutions, or cloud-based platforms, that include pure
Kubernetes plus vendor-backed support.

• Vendor Distro (with value add) shows companies that offer more
complete environments, including scheduling, development, and life
cycle management, featuring Kubernetes at the core of their systems.

• App Platforms / PaaS shows full-scale Platforms as a Service,
including Red Hat OpenShift, that effectively abstract away the
management and maintenance of Kubernetes behind end-to-end,
automated development and deployment environments.

For those interested in an even more detailed collection, take a look at
this frequently updated, community-managed list of Kubernetes
distributions.

Red Hat’s product manager for Kubernetes and OpenShift, Brian Gracely,
told us he expects customers’ recognition of Kubernetes to actually
subside, as momentum for the platforms that contain it (such as his own,
naturally) continue to rise.

“Ultimately, it kind of comes down to, are you building a business model
around the idea that eventually, it does become boring?” asked Gracely.
“You have a choice of then building some differentiation on top of that, or
around that. What we see right now is a very, very healthy ecosystem
around a lot of companies that want to be part of this digital
transformation age — cloud-native applications — and that’s fantastic.
We’re seeing people approach it from different perspectives. Red Hat is
delivering it as software; we also deliver it as a service through OpenShift
Online. We’re seeing the major cloud providers taking it, and making it a
service that anybody can consume — which is a new business model,
and it’s great.

http://www.thenewstack.io
http://red.ht/2uJGuQo
https://docs.google.com/spreadsheets/d/1LxSqBzjOxfGx3cmtZ4EbB_BGCxT_wlxW_xgHVVa23es/edit#gid=0
https://docs.google.com/spreadsheets/d/1LxSqBzjOxfGx3cmtZ4EbB_BGCxT_wlxW_xgHVVa23es/edit#gid=0
https://twitter.com/bgracely?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

45Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

MAP OF THE KUBERNETES ECOSYSTEM

“I think it’s perfectly fine to say the Kubernetes ecosystem right now is still
in its early days,” he continued. “There’s still a lot of exploding innovation
going on, and really cool ideas. But if you talk to the people who are
dedicating a lot of engineering talent to this — Red Hat, Microsoft, Google,
Intel, Huawei, IBM — ultimately, our goal is, we want the core technology
to be stable. People are going to go to market in different ways. And yes,
five years from now, maybe we won’t call it the ‘Kubernetes Ecosystem.’
But if I’m somebody who’s looking at Kubernetes, and people are saying,
‘Well, it’s becoming kind of a boring technology,’ that’s perfectly fine. It
makes it much more tangible for a business customer to say, ‘This is
something I don’t have to think about nearly as much.’”

http://www.thenewstack.io

46Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM 46

ORCHESTRATION AND
THE DEVELOPER
CULTURE

In the young history of container orchestration,
one of the most successful practitioners of
merging the microservices mindset with
enterprises’ development and deployment

pipelines has been the Berlin-based director of engineering for CI/
CD platform provider Codeship, Laura Frank.

The more businesses Frank has come into contact with as a Docker
Captain, the more she has come to understand the cultural issues
facing developers in organizations today, and the extent to which
platforms like Kubernetes may stop short of catalyzing
revolutionary changes in and of themselves. In this podcast, hear
more about “Captain” Frank’s experiences with businesses that are
trying to navigate these new and still-uncharted waters. Listen to
the Podcast.

Laura Frank is the director of engineering at Codeship and a Docker
captain. Her primary focus has been on fortifying Docker’s
infrastructure and improving its overall CI/CD experience. Prior to her

involvement with Docker, she worked on HPE’s public cloud offering and on the
OpenStack project.

http://bit.ly/2ol8lzD

47Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE
SURVEY
by LAWRENCE HECHT

S
ome folks speculate that Kubernetes has already won the
container orchestration wars. If indeed there are such wars,
beyond what certain technology publications tend to apply to

markets with any degree of contention whatsoever, then it’s hard to deny
that Kubernetes does seem to have an edge. Many early adopters have
concluded that its combination of platform features and community gave
it an edge over alternatives.

The New Stack’s Kubernetes User Experience Survey stops short of
conclusively proving Kubernetes has become, or is becoming, the de facto
container orchestration tool among organizations we surveyed. Still, it
provides a clear picture of how people are evaluating and deploying
Kubernetes, the challenges they face, and their views on several
competitive products. The survey also looked at container users to
determine their selection criteria for orchestration platforms.

Key Findings
• Production-ready: Kubernetes adoption has increased as more

containerized applications move into production.

http://www.thenewstack.io
https://thenewstack.io/author/lawrence-hecht/

48Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

• The door remains open: There may yet be a chance for Kubernetes’
competitors. Whether Docker Swarm, AWS EC2 Container Service
(ECS), Mesosphere Enterprise DC/OS, or any other product actually
mounts a successful challenge to Kubernetes in this space, will depend
largely upon how satisfied Kubernetes users are as a whole, and to a
lesser extent upon other factors such as technological superiority and
commercial value-adds.

• Greater expectations: You will find users who do complain about
what they characterize as the platform’s complexity, implementation
difficulties, and maintenance headaches. Distributed systems are
inherently complex, and Kubernetes is certainly no exception. But at
least for now, users are generally happy with Kubernetes’ approach.

• Commercial platforms abound: Some 45 percent of Kubernetes
users surveyed have in place a vendor distribution, whether it be
integrated into a platform, supplemented with additional software or
just bundled with enterprise support. Whether they’re tagged as
Platform as Service (PaaS) or Container as a Service (CaaS), platforms
like OpenShift (arguably a PaaS) and Google Container Engine (a CaaS
platform) are becoming more popular. Vendors offering the standard
fare of support with implementing or managing the platform may face
less success unless they opt for something more unique and
differentiated.

• The simpler, the better: Flannel is the leading network overlay for
software-defined networking with Kubernetes, among those we
surveyed. Project Calico, the open source Border Gateway Protocol
(BGP) router project, is also seeing significant adoption among cluster
operators that have just begun implementing Kubernetes in
production.

http://www.thenewstack.io
https://coreos.com/flannel/docs/latest/
https://www.projectcalico.org/

49Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

• New monitoring methods take shape: Prometheus is by far the
most cited tool among our survey respondents for monitoring
Kubernetes clusters. Heapster, however, has also gained significant
adoption among our group. Traditional monitoring vendors are not
faring as well, although usage levels for their tools appear to increase
when they are being integrated into a larger, custom monitoring
platform.

• Bringing containerization to operators: Among the organizations
we surveyed, the cluster operator job role is the one most likely to be
implementing Kubernetes. Although application operators are less
often involved, they may eventually have the most to gain when the
platform is deployed as part of a continuous deployment strategy.

Sample and Methodology
We drew our observations and conclusions for this chapter from a
web-based survey conducted by The New Stack from May 15 through May
29, 2017. Our report is based on the subset of data from 470 individuals
who identified their organizations as container users. People with
hands-on experience implementing Kubernetes were asked the most
questions, although some questions were asked of other Kubernetes
evaluators to ascertain their opinions and observations.

We made extra efforts to distinguish the responses of actual Kubernetes
end users from those of members of the infrastructure and tools market. If
a respondent’s employer provided PaaS, Infrastructure as a Service (IaaS),
or software deployment tools, we asked that person to limit responses to
the use or evaluation of Kubernetes within the employer company. We’ll
tell you when vendor responses may have affected our findings.

Over half of our sample is composed of people employed or contracted by

http://www.thenewstack.io
https://prometheus.io/
https://github.com/kubernetes/heapster

50Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Broad Kubernetes Adoption Follows Broad Container Adoption

Source: TNS 2017 Kubernetes User Experience Survey. Q. What’s the status of container usage at your enterprise or org?
What’s the status of Kubernetes usage at your enterprise or org? Broad implementation for production environment, n=127;
Initial implementation for production environment, n=165; Currently evaluating or running a trial of Kubernetes, n=105;
No current use, but have evaluated or used Kubernetes in the past, n=34 No experience with Kubernetes, n=39.

Status of Kubernetes Usage

All respondents
using containers

Using containers,
but not in production

Initial container
usage in production

Broad container
usage in production

No experience
with Kubernetes

No current usage, but
evaluated or used
Kubernetes in the past

Evaluating or running
trial of Kubernetes

Initial usage,
in production

Broad usage,
in production

60% 19% 11% 5% 4%

58%5% 22% 7% 9%

2% 49%18% 13% 17%

27% 35% 22% 7% 8%

enterprises with over 100 employees, with 24 percent working for
companies with more than 1,000 employees. We’ll also tell you when
company size may have a material impact on our findings.

Respondents to our web survey are mainly users of virtual infrastructure
and distributed systems platforms, which may or may not be
representative of the broader IT market.

A cleaned-up version of the data is available for the community to review.

Who Uses Kubernetes
As we reported in The New Stack’s 2016 survey (see “The Present State of
Container Orchestration”), people don’t realize their organizations need
container orchestration until they’ve already deployed their first
containerized applications to production. This event appears to be the
motivating reason for respondents to identify and deploy tools to manage

http://www.thenewstack.io
https://cdn.thenewstack.io/media/2017/07/31fd0e91-tns_kubernetes_user_experience_survey-pii_removed.xlsx
https://thenewstack.io/tns-research-present-state-container-orchestration/
https://thenewstack.io/tns-research-present-state-container-orchestration/

51Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

the infrastructure on which their containers are deployed.

We asked developers to characterize the current state of their
organization’s deployment of containers. Keep in mind, all of these
developers’ organizations are using containers to some extent. Among all
developers surveyed, some 27 percent of respondents stated their
organizations have already adopted Kubernetes broadly in production.
Another 35 percent said their organizations are in the initial stages of
Kubernetes adoption.

However, when we break down responses to this line of inquiry by the
state of their production environments, a meager five percent of
respondents whose organizations are in the initial stages of container use
have adopted Kubernetes broadly. Nearly three in five, however, have
begun their Kubernetes adoption. Compare this to only 18 percent of
respondents whose organizations do use containers, though not yet in
production, who are in the initial stages of using Kubernetes. This is a clear
signal that the journey toward Kubernetes begins for most firms well after
they’ve adopted containers thoroughly in production.

Put another way, if containers have not made their way to production use,
don’t expect Kubernetes to have been implemented.

Do Large Enterprises Prefer Kubernetes?
We gave respondents a list of five phrases, and asked them to choose the
one they felt best characterized the relative state of the Kubernetes
deployments in their own organizations.

Respondents working in large companies are more likely to be Kubernetes
users. When asked to characterize the status of Kubernetes usage in their
organizations, over one-third of respondents (34 percent) said they were
in the deployment stage, with another 38 percent in the initial phase.

http://www.thenewstack.io

52Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Kubernetes Implementation

by Size of Enterprise/Organization

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. What is the status of Kubernetes usage at your enterprise or organization?
Q. How many employees work at your enterprise or organization? n=333.
2-100 employees, n=118; 101,-1,000 employees, n=72; > 1,000 employees, n=96.

Status of Kubernetes Usage

No experience
with Kubernetes

No current usage, but
evaluated or used
Kubernetes in the past

Evaluating or running
trial of Kubernetes

Initial usage,
in production

Broad usage,
in production

2 - 100
employees

101 - 1,000
employees

>1,000
employees 34% 38% 17% 7% 4%

22% 32% 25% 8% 13%

25% 32% 21% 9% 13%

By comparison, only 22 percent of respondents in medium-sized
organizations and some 25 percent of those in small companies had
broadly implemented Kubernetes.

According to Datadog’s analysis of its own customers, large organizations
started their container journey earlier than everyone else. It makes sense
that big companies are also further along in adopting container
orchestration systems that alleviate manual work.

Job Functions of Container Users
We asked all respondents in our survey, regardless of their organization’s
state of adoption for Kubernetes, to characterize their job roles with
respect to Kubernetes. We gave them a list of four choices — plus Other,
IT-related — and asked them to choose the role that best suited their job
relationship with the orchestrator, even if it’s in the formative stage.

Continuing what we’ve seen in previous container surveys, a sizable

http://www.thenewstack.io
http://thenewstack.us11.list-manage.com/track/click?u=ab6c02b160780b8e6569144f8&id=409eeadfc3&e=1751031cd1

53Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Job Role

7ource� 8he New 7tacO 2017 Kubernetes 9ser)xperience 7urvey. 5. What is your primary Nob role regarding Kubernetes? n=467.

Non-technical (including
management and marketing)

Application
developer

Cluster operator
(including SRE role)

Application operator
(including DevOps role)

Other, IT-related

27%
18%

15% 32%

7%

plurality (32 percent) of respondents self-identified as having a DevOps
role. For this report, we described someone who manages the operations
of applications on Kubernetes as being in a DevOps role. Another 27
percent care about Kubernetes from a cluster operator or site reliability
engineering (SRE) perspective. Although the container phenomenon
started among application developers, only 18 percent of respondents
chose that as their Kubernetes-related job role.

Among cluster operators and those with SRE roles, 71 percent were likely
to work in organizations where Kubernetes is part of production — the
largest plurality of job roles in our survey. This figure drops to 60 percent
among those with an application operator role. Cluster operators may be
more likely to be system managers than developers, which may explain
why they care more about Kubernetes’ management, and how it
integrates with other systems.

http://www.thenewstack.io

54Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Kubernetes Implementation

by Job Role

Source: The New Stack 2017 Kubernetes User Experience Survey.
5. What is the status of Kubernetes usage at your enterprise or organi^ation? 5. What is your primary Nob role regarding Kubernetes?
Application operator, n=148; Application developer, n=86; Cluster operator, n=127.

Status of Kubernetes Usage

No experience
with Kubernetes

No current usage, but
evaluated or used
Kubernetes in the past

Evaluating or running
trial of Kubernetes

Initial usage,
in production

Broad usage,
in production

Cluster operator
(including SRE)

Application
developer

Application operator
(including DevOps) 21% 39% 20% 9% 11%

33% 30% 24% 8% 4%

32% 39% 20% 5% 4%

Application operators and those with DevOps roles are not necessarily
less interested in Kubernetes, but instead may be part of a second wave of
interest among people whose organizations have yet to adopt Kubernetes
in production.

How Kubernetes is Used in Production
For about two-thirds of organizations, Kubernetes — a platform said to be
the product of a developer-led revolution — stages applications for use by
developers. Although developers are not the majority of our respondents,
they’re the ones behind the original Docker revolution, and the ones
benefitting first from more efficient deployment pipelines.

Types of Orchestrated Workloads
We gave the subset of respondents whose organizations have deployed
applications to Kubernetes in production a list of 13 categories for those

http://www.thenewstack.io

55Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Workloads Running on Kubernetes

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. What types of workloads does your enterprise or organization run on Kubernetes? n=235.

Research computing (e.g., HPC, HTC)

Media streaming and content delivery

Other line of business (LOB) applications

Big data analytics, mining (e.g., Hadoop, Spark)

Business applications (e.g., ERP, CRM, email)

Mobile applications and services

SaaS delivery

Infrastructure services
(e.g., public/private cloud services)

Database and data warehousing

Website hosting and web presence

Industry-specific applications

Web services and ecommerce

App development (e.g., IDE, CI/CD, platform, test)

% of Respondents Running Each Workload

(select all that applies)

65%

53%

37%

33%

32%

32%

31%

30%

24%

23%

13%

12%

5%

These values are low.
Revolutionary architectures
in modern computing
have yet to revolutionize
the containerization space.

A category vendors said
was being transformed by
Kubernetes is at the bottom.

applications’ workloads, and asked them to choose any and all that
applied to their own production workloads.

About two-thirds of Kubernetes production implementations (65 percent)
are running applications dedicated to the development process itself. This
figure is further evidence that developers are the drivers behind the
architecture of orchestrated, distributed systems. Although some
e-commerce apps rely on state (for instance, persistent data from
databases) to support transactions, web services that don’t rely on state
were some of the earliest application types to both be containerized —
and, for that matter, to move to a microservices architecture. Not
surprisingly, at 53 percent, web services and ecommerce are the second
most likely workloads being run on Kubernetes.

Just fewer than one-third of respondents (32 percent) say their
organizations are running databases or data warehousing services on

http://www.thenewstack.io

56Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Vendors More Likely to Run Certain Types
of Workloads on Kubernetes

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. What types of workloads does your enterprise or organization run on Kubernetes? Vendor, n=94; Non-vendor, n=141.

% of Respondents Running Each Workload Type

(including those using multiple)

Big data analytics, mining
(e.g., Hadoop, Spark)

Database and data warehousing

SaaS delivery

Infrastructure services
(e.g., public/private cloud services)

Vendor

Non-vendor

23%

14%

14%

34% difference

52%

18%

45%

22%

40%

26%

31%

17%

Kubernetes, and even fewer (30 percent) are running mobile app servers
and mobile services. These are far from negligible numbers, but still their
low values are indicators that two other so-called revolutionary
architectures in modern computing — big data and mobile — have yet to
revolutionize the containerization space. Surprisingly, only five percent of
respondents said their Kubernetes-based workloads are based around
research jobs such as high-performance computing. This is a category
that vendors said was being transformed by Kubernetes early in its
history.

Use Cases for Vendors
We gave both vendors and end-users four broad categories of services,
and asked them to choose any and all that applied to their Kubernetes
deployments. In contrast with end users, vendors were more likely to run
workloads related to provisioning cloud infrastructure and basic services
such as databases. Some non-vendor respondents may receive these

http://www.thenewstack.io

57Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

of Clusters Deployed to Kubernetes
in Production Environments

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. How many clusters are deployed? Broad Kubernetes Implementation, n=98, Initial Implementation, n=131.

> 50 11-506-10
clusters

5432
clusters

1

Initial Implementation Broad ImplementationFull Sample

11
%

15
% 14

%

16
%

11
%

13
%

7
%

12
%

15
%

8
%

13
%

8
%

10
%

7
%

13
%

4
%

4
%

5
%

21
%

21
%

22
%

17
% 15

%

20
%

types of services from an external provider that is actually running
Kubernetes.

Vendors were more likely to say they were running stateful workloads (the
traditional variety) than stateless services. Some 40 percent of vendors
responding said they run databases and data warehousing operations on
Kubernetes, compared with only 26 percent of non-vendors. Similarly, 31
percent of vendors run big data analytics on Kubernetes, compared with
17 percent of non-vendors. These stark differences are clear indicators
that the requirements of hyperscalers and software service providers
differ from those of commercial enterprises.

Size and Breadth of Deployments
We asked respondents to quantify the clusters in their organizations’
current Kubernetes deployments, and then grouped their answers into
eight buckets.

http://www.thenewstack.io

58Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Among all respondents, some 21 percent said their organizations deploy
two Kubernetes clusters, and that figure stays solid among those who
have just begun their Kubernetes involvement (21 percent) and those who
are well along in the adoption process (22 percent).

The second peak falls in the six to 10 cluster range. Once the number of
clusters reaches double digits, this second “peak” becomes more
pronounced. The 17 percent figure for six to 10 clusters represents an
average between the 20 percent of broad implementers in that range, and
the 15 percent of initial implementers. This should give you a general idea
of the steady pace with which clusters are being added to maturing
Kubernetes deployments.

Broad implementations are indeed farther along, as some 38 percent of
respondents are managing more than five clusters, compared to only 26
percent of those still in the initial phase. In other technology markets,
large enterprises often have larger-scale deployments, but that’s not yet
the case among our group of participants.

Based on these responses, we can estimate the average number of
clusters deployed on Kubernetes for all implementers at 23.

Multiple Physical Sites
As the scope of workloads being containerized increases, the number of
clusters will probably mirror that growth. A roadblock to managing that
growth may be the ability to run clusters across multiple clouds and
multiple sites. That obstacle can be overcome by technology advances.
Another possible roadblock is that companies build out the capability to
manage large clusters, but their internal developers do not rapidly migrate
workloads over to containers. In both situations, cluster operators will be
stuck in the uncomfortable position of managing underutilized
infrastructure.

http://www.thenewstack.io

59Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Deployments Spanning Multiple Data Centers

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. Does your deployment span across multiple data centers? Full Sample, n=232; Cluster Operators; n=81; Non-vendors, 139.

% of Respondents Whose Organization

Deploys Kubernetes in Multiple Data Centers

Non-vendors

All respondents

Cluster operator
(including SRE role)

T
y

p
e

s
 o

f
O

r
g

a
n

iz
a

ti
o

n

68%

53%

46%

We asked all survey participants whether their organizations’ Kubernetes
deployments spanned multiple physical data centers, to determine
whether virtual data centers were indeed expanding beyond the
boundaries of physical ones. Slightly more than half of deployments
among our respondents (53 percent) do span multiple data centers.
Companies that do not provide cloud or software services were less likely
to have multi-site deployments (46 percent), but cluster operators were
much more likely (68 percent).

A full 97 percent of respondents’ companies that operate Kubernetes
across multiple data centers also run more than one cluster. Completely
federating the components of a virtual data center across multiple clouds
may yet happen, but it hasn’t happened yet.

http://www.thenewstack.io

60Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Types of Storage Used With Kubernetes

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. What types of storage volumes does your enterprise or organization use with Kubernetes? n=221.

Don't know

Object

File

Block

% of Respondents Using Each Type of Storage

(including those using multiple)

66%

46%

29%

9%

File storage use is
quite high, signaling that
more integration with
older application types
is taking place.

Resources Usage with Kubernetes
Whether organizations stage their applications mostly in the public cloud
or mostly on-premises, clear favorites are emerging for the classes of
resources they use with Kubernetes. Adoption patterns for storage,
networking and monitoring can inform your own decisions about which
tools you use, or which ones you support in your own products.

Storage Systems
The types of logical storage structures used in today’s Kubernetes
deployments offer some deeper revelations into the nature of workloads
being deployed. Block storage is king, having been cited by two-thirds
(66 percent) of our respondents as being involved with their Kubernetes
implementations.

Few deployments are relegated to only one type of logical storage, so it is

http://www.thenewstack.io

61Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Specific Storage Used With Kubernetes

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. What specific storage volumes does your enterprise or organization use with Kubernetes? n=208.

% of Respondents Using Each Storage Type

(including those using multiple)

Portworx Volumes
Flocker

ScaleIO Volumes
Other (write-in response with single mention)

Azure File
vSphere Volumes

iSCSI
Azure Disk

Cinder (OpenStack block storage)
Ceph RADOS Block Device (RBD)

hostPath (single node testing only)
CephFS

GlusterFS
Google Compute Engine (GCE) Persistent Disk

Network File System (NFS)
Amazon Elastic Block Store (EBS)

Fibre Channel (FS)
Quobyte Volumes

VMware Photon
Local disk (write-in)
Cleversafe (write-in)

Adoption levels
drop to 9% and 8%
when excluding
vendor respondents

59% usage among
cluster operators
versus 43% for

application operators

50%
30%
30%

16%
14%

12%
8%
8%

6%
5%

4%
3%
3%

2%
1%

0.5%
0%

telling that just fewer than half of respondents (46 percent) cited file
storage at the type they’re using. Newer, cloud-native applications with
microservices architectures, and that utilize databases or data structures,
typically don’t need a file system because they are not interacting with
data through an operating system. A 46 percent figure is quite high,
signaling that more integration with older application types is taking place.

Object storage is used by 29 percent of respondents, which is relatively
high compared with adoption rates for object storage that we’ve seen in
the past. Since object storage is scalable, developers working on
distributed systems likely have experience with it already. In addition,
object storage is often used to deliver static content for websites, which is
also a common type of workload for Kubernetes.

Providers of Logical Storage Services
We gave respondents a list of specific logical storage system brands,

http://www.thenewstack.io

62Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

projects and technologies, and asked them to cite any and all that their
Kubernetes deployments utilize. We gave them an opportunity to write in
alternatives that we did not list. Some of these are commercial products
or services, while others are open source projects.

Partly due to its strong position in the cloud market, Amazon Elastic Block
Storage was cited by half (a full 50 percent) of our survey respondents
among all Kubernetes implementations. Admittedly, Google’s position of
respect among early Kubernetes adopters may have played a greater
persuasive role, than its own market share in the cloud space, driving the
high percentage of respondents (30 percent) who cited GCE Persistent
Disk. So these results are not an indicator that, for instance, Google has
three-fifths of Amazon’s share.

Another indicator of this probable tilt in Google’s favor among our group is
the fact that only seven percent of respondents cited using Azure-branded
logical storage. So Microsoft’s cloud market share was evidently under-
represented here. The likely reason is that Kubernetes only became an
official Microsoft offering in February 2017. As its Azure Stack becomes
more widely available, its customers should have more storage options
available to them besides just Azure. As a result, we expect Azure
developers will be more likely than customers of other clouds to utilize
storage they purchased directly from a source other than a major cloud
service provider.

Since cluster operators often belong to IT operations teams, it would
logically follow that they would be more likely to use internal storage
resources. At least among our survey participants, this isn’t the case.
Some 59 percent of cluster operators use AWS storage, but only 43 percent
of application operators (DevOps) do the same. Perhaps using the AWS
cloud lets SREs focus on infrastructure monitoring, rather than suffer the
constant headaches associated with managing hardware.

http://www.thenewstack.io

63Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

SoHtYare�&efined 0etYorMing Used With Kubernetes

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. What is being used for software-defined networking (SDN) in your Kubernetes implementations? Select all that apply. n=197.

Nuage Networks VCS
(Virtualized Cloud Services)

Amazon VPC

Azure Container Services VNet

Rancher

Other (write-in response w/single mention)

Contiv

Romana

Open Virtual Networking (OVN)

OpenContrail or Contrail

L2 networks and Linux bridging

Open vSwitch

Weave Net from Weaveworks

Google Compute Engine (GCE)

Project Calico

Flannel

Write-in

% of Respondents Using Each SDN Type

(including those using multiple)

45%
28%

25%
16%

11%
10%

4%
4%
4%

2%
2%
2%

1%
1%
1%

21% when counting
only developers

10% when counting
only developers

Integrates
with Flannel

52% among those
with broad
implementations
of Kubernetes

Most appear to be
utilizing GCE for its
native SDN capability

Many respondents said they used a specific file-based storage system,
with NFS being cited most often (30 percent), followed by GlusterFS (16
percent) and CephFS (14 percent). However, the latter two were cited more
often by vendors. Omitting these vendors, we’re left with only nine percent
of the remainder using GlusterFS, and eight percent using CephFS. Quite
likely, many of these vendor respondents are employed by Red Hat (which
utilizes all three of these systems) or one of its many partners. This would
be in accordance with a trend we’ve seen before where OpenStack vendors
have adopted Red Hat-backed storage standards more than others.

Container-specific storage solutions were seldom cited. Perhaps as more
persistent workloads move to containers, demand for specialized storage
options may increase. Another possibility has to do with convenience.
Users may prefer the storage they already know, or the storage that’s
easiest for them to access. The latter explanation would not portend well
for the startups that follow in the footsteps of now-defunct ClusterHQ.

http://www.thenewstack.io

64Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Software-Defined Networking
Next, we gave respondents a list of software-defined networking
products, projects and technologies, and asked them to cite any and all
that applied to their Kubernetes deployments. We gave them an
opportunity to write in alternative responses we didn’t list.
Overwhelmingly, Flannel was the most cited SDN component with 45
percent of respondents citing, followed by Project Calico at 28 percent,
and 25 percent citing GCE’s native SDN tools.

Digging deeper into these numbers, we found that CoreOS’ Flannel was
more likely to be used by those with broad implementations of
Kubernetes (52 percent of respondents) as opposed to those with initial
implementations (39 percent). The Flannel system is a network fabric
explicitly for containers, that relies upon a small agent called flanneld
installed on each host. Flannel has garnered a reputation of “just
working,” so there’s no evidence on the horizon yet that its top position is
in any jeopardy.

Tigera, the company behind Project Calico, has been working on
integrations with Flannel, so it isn’t surprising that 46 percent of those who
cited Calico also cited Flannel. Project Calico has also seen recent success
among cluster operators. Some 40 percent of the 40 cluster operators
who said their Kubernetes implementations are in the initial stages say
they are using Project Calico. Whether Tigera can retain these users
through their journey to broader adoption is an open question.

Among the 25 percent of respondents citing Google Compute Engine,
most appear to be utilizing its native SDN capability. One respondent who
works at a company with between 2 and 100 employees said GCE has
“superior container-level networking … compared to experience with
Mesos and Weave overlay network.” If others agree, then users won’t have

http://www.thenewstack.io

65Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Tools/Services Used to Monitor Kubernetes Clusters

Source: The New Stack 2017 Kubernetes User Experience Survey.
5. What tools, products and services are being used to monitor Kubernetes clusters? n=20�.

% of Respondents Using Each Tool Type

(including those using multiple)

Wavefront/VMware
Grafana (write-in response)

AppFormix/Juniper
Netsil

TICK Stack (InfluxDB) (write-in)
Sensu (write-in)

Cobe
CoScale

Sematext

Dynatrace

AppDynamics

Weave Scope

Other (write-in response with single mention)

Sysdig

New Relic

Datadog

Tools provided by cloud provider

cAdvisor

Heapster

Prometheus (incl. vendor-supplied versions) 63%

40%

37%

18%

13%

13%

8%

6%

6%

4%

2%

2%

1%

0.5%

Despite high usage,
this isn’t full dominance.

79% of Prometheus users
also cited another tool.

9% when counting
only developers.
Good numbers for a
small company

to cobble together an SDN solution if they use Google’s services.

Application developers have varying needs, so it’s not surprising that their
choices for SDN approaches were all over the map. Developers citing use
of L2 networks and Linux bridging jumped to 21 percent of respondents,
compared with 10 percent for the full sample. Use of Open Virtual
Networking (OVN) was also higher among developers compared to all
respondents (10 percent versus four percent). Naturally, this shows that
tools made by developers will be more familiar to developers. But it also
suggests that non-developers may not be familiar with the SDN tools their
developer counterparts are using.

Cluster Monitoring
Organizations’ choices of monitoring tools for use with Kubernetes speaks
volumes about their application deployment strategy. As you’ll see
elsewhere in this book, an organization may prioritize monitoring its

http://www.thenewstack.io

66Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

infrastructure over its applications, or vice versa. Which target an
organization chooses also speaks to who does the monitoring: developers
or operators.

We gave Kubernetes users a long list of systems monitoring tools of
various types, and asked them to choose any and all that were being used
with their deployments. We gave respondents an opportunity to write in
alternatives that we had not listed.

Among those responding, some 63 percent monitor their clusters using
Prometheus, the services monitoring components whose project, like
Kubernetes, is shepherded by the Cloud Native Computing Foundation.
But this doesn’t mean Prometheus has already achieved dominance over
other tools and strategies, as some 79 percent of those who cited
Prometheus also cited another tool. The modern data center monitoring
strategy typically involves either acquiring an amalgam of tools
intentionally, or piecing them together from what the data center has
already used for years. In fact, the average organization we’ve polled uses
2.2 technologies to monitor its clusters.

Also widely cited as having been adopted are Heapster (40 percent),
which monitors resource usage events for Kubernetes specifically; and
cAdvisor (37 percent), a resource usage monitor created for Docker
containers.

Sematext has more visibility among application developers. Some nine
percent of developers responding say they use its Kubernetes Agent,
which is four times greater than the full sample — a good number for a
small company.

Pairing Resource Monitors Together
Prometheus’ project leaders could strengthen its position in the data
center by continuing the strategy of integration with other tools. The

http://www.thenewstack.io

67Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Kubernetes Monitoring Tools/Services Used With Each Other

Source: The New Stack 2017 Kubernetes User Experience Survey. Q. What tools, products and services are being used
to monitor Kubernetes clusters? Prometheus Users, n=131; cAdvisor Users, n=77; Heapster Users, n=84.

Datadog

Sysdig

Weave Scope

New Relic

Tools provided
by cloud provider

Heapster

cAdvisor

Prometheus (incl.
vendor-supplied versions) n/a

n/a

n/a

Heapster users

cAdvisor users

Prometheus users

58%
73%

55%

43%

60%
37%

15%
10%

11%

7%
6%

11%

5%
8%
9%

4%
8%
8%

11%
10%

6%

Many cAdvisor
users also use
Prometheus
and Heapster.

prospects for this are especially strong with cAdvisor, 73 percent of whose
users also use Prometheus, while some 60 percent of cAdvisor users also
have Heapster. Since cAdvisor provides data inputs to other tools, its
integration-by-design strategy makes perfect sense.

DevOps professionals in our survey revealed a more hands-off approach
to managing Kubernetes, stating they were less likely to use Heapster and
cAdvisor. However, they were also less likely to use tools provided by a
cloud provider (six percent versus 18 percent of all respondents). By
definition, DevOps should be the convergence point for application and
systems monitoring. If indeed such a convergence point exists, then
application operators should be paying attention and weighing in on their
organizations’ monitoring strategies — especially as they’re being cobbled
together from vendor-based and open source options.

Traditional application performance management (APM) and

http://www.thenewstack.io

68Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Types of Distributions Used

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. What types of distributions are being used? (multiple responses allowed) n=173.

% of Respondents Using Each Type of Distribution

(including those using multiple)

Custom build
(write-in response)

Vendor distribution
without value-added software

(e.g., RackN, Heptio)

Vendor distribution
with valued-added software

Platform distribution

Community-supported 74%

27%

16%

4%

3%

45% use a vendor
provided solution

infrastructure monitoring vendors are much less likely to be cited by
Prometheus users. Datadog monitors Kubernetes clusters for about one
non-Prometheus user in four. If Datadog’s customers are satisfied with
the monitoring strategy they’ve already employed, they may not end up
using Prometheus at all. Absent that, incumbents will have additional
opportunities as some users look to full stack monitoring solutions.

Community First, Vendors Later
If you have heard one thing about Kubernetes, it’s that its support
community is really strong. One respondent to our survey who works at a
mid-tier enterprise put it this way: “The community and involvement of
other companies seemed way huge.” Along with its technical merits, the
strength of its community is a key reason Kubernetes even had a chance
to be adopted so quickly, across such a diverse range of enterprises.

http://www.thenewstack.io

69Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Community Options versus Vendor Products
Many observers believe that for Kubernetes to continue its growth
trajectory, vendors will need to provide more support and services.
Certainly we’ve already seen a significant uptake of vendor-based options
in recent months.

But the strength of the community-supported option remains formidable.
For now, 74 percent of total respondents said their organizations use a
community-supported distribution of Kubernetes — typically, a version
pulled from GitHub. Among this group, only one quarter use an additional,
non-community supported distribution.

Kubernetes has simply not been around long enough for us to ascertain
how quickly organizations transition community-supported Kubernetes to
vendor distributions, or even the extent to which that transition is even a
priority. However, we do know that a total of 45 percent of respondents
used a vendor-offered product of some sort. About half of this group say
they use a platform, with another 16 percent saying they use a vendor
distribution combined with other valued-added software. A few
respondents said they use a vendor distribution that provides Kubernetes
support and little else.

Brand Recognition
This next line of inquiry tosses a live grenade in amongst our participants,
to see just how they’ll react. We asked survey participants to write the one
or two names from that list that were the names of their “distribution.”
That’s vague phrasing, and it’s vague on purpose.

Our intent was to determine which brands Kubernetes users associate
with Kubernetes. Conceivably, a “distribution” could refer to the vendor
who provides the Kubernetes platform, or the maker of the Linux
distributed with that platform, or perhaps the cloud service provider on

http://www.thenewstack.io

70Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Brands and Technologies Associated with

Kubernetes Implementations

Source: The New Stack 2017 Kubernetes User Experience Survey. Q. What are the names of the main one or two distributions being used?
Please include as much information as possible about the vendor, service name and/or version number. n=91.

Other
(one mention)

bootkube

Canonical

kube-aws

Azure
Container Service

Rancher

kubeadm

Kubernetes
(version # cited)

CoreOS Tectonic

kops

Google
Container Engine

Red Hat OpenShift

Alpine

RHEL

CentOS

Debian

Ubuntu

CoreOS
(not Tectonic)

Distributions and Tools Linux Distributions

21%
15%

10%

9%
4%

3%

3%
2%

2%

2%

2% 3%

3%

4%

4%

12%

15%

8%

More respondents
cited CoreOS (15%), the
producer of Tectonic,
than Tectonic.

Rancher imprinted itself as
a Kubernetes brand, because
it can effectively automate
Kubernetes deployments.

which the orchestrator runs.

Greater than one respondent in five (21 percent) cited Red Hat OpenShift,
for the largest plurality of responses to this line of inquiry. But as we
discovered when breaking down responses, among those participating
who were employed by vendors, a full 32 percent cited OpenShift,
compared with only 14 percent who did not work for software vendors.

Breaking down responses further, we determined that only 12 of the 19
respondents who cited OpenShift believed it was a vendor-based
distribution with value-added features.

Many respondents named their Linux distribution as their Kubernetes
provider. In fact, more respondents cited CoreOS (15 percent) than
Tectonic (nine percent), even though CoreOS is the producer of Tectonic.
Some 10 percent of respondents mentioned kops, which is actually a
provisioning and installation tool for Kubernetes. Respondents who use a

http://www.thenewstack.io

71Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
OpenShift’s Lead Partly Due to Vendor

Participation in the Survey

Source: The New Stack 2017 Kubernetes User Experience Survey. Q. What are the names of the main one or two distributions being used?
Please include as much information as possible about the vendor, service name and/or version number. Vendor, n=34; Non-vendor, n=57.
WARNING: Small Sample Size.

Azure Container Service

Rancher

CoreOS Tectonic

Red Hat OpenShift

Google Container Engine

Vendor

Non-vendor

12%

18%

32%

14%

12%

7%

5%

4%

-6% difference

18% difference

5%

5%

4%

community-supported Kubernetes often look to kops to provide them
with the most up-to-date release.

Rancher is an established container management platform, produced by
Rancher Labs. Although it does not include Kubernetes, it can automate
Kubernetes deployment very effectively. Some three percent of total
respondents cited Rancher as one of the Kubernetes “distributions” we
asked for. So among these few people, Rancher imprinted itself as an
effective Kubernetes brand.

Evaluating Kubernetes and Competitors
People do not choose Kubernetes in a vacuum. A full 93 percent of our
survey respondents told us their organizations had evaluated alternatives
to Kubernetes before making their choice.

http://www.thenewstack.io

72Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Evaluation and Use of Other Container Orchestration Solutions

Source: TNS 2017 Kubernetes User Experience Survey. What were the other solutions your enterprise or organization evaluated? What, if any,
are currently in use? Evaluated n=111, Using n=195. NOTE: It was difficult to differentiate whether write-in responses were for evaluation or use.
Rancher received 9 write-ins (3% of evaluated responses). Cloud Foundry received 5 (2%). Heroku and Google App Engine received 2 each.

Evaluated

Using

No other solution
was evaluated

HashiCorp Nomad

Azure Container Service

OpenStack
(e.g., Magnum)

Homegrown customization
of multiple tools or scripts

Apache Mesos
or Mesosphere

Amazon EC2 Container
Service (ECS)

Docker
(e.g., Engine or Swarm)

79%
29%

50%

49%

12%

9%

16%
34%

30%
9%

22%

18%

7%

2%

2%

50% difference

38%

40%

18%

21%

20%

16%

7%

With its containers
widely adopted,
29% are using at least
some of Docker's
orchestration capabilities.

Openness to Alternatives
What’s more, a full 45 percent of respondents told us they are
simultaneously utilizing other application platforms. Of those that have
not adopted Kubernetes, 61 percent said they are using a competitive
product.

The buildout of tools for managing these new distributed environments is
still shaking out. So there’s still rays of hope for Kubernetes’ competitors.
Clearly the market itself lacks definition, and even many Kubernetes users
are still thinking about alternatives.

Perspectives on Competitors
We gave survey participants a list of seven container platforms, plus a No
Choice option, and asked them to choose any and all that their
organizations are presently evaluating, and also that they’re currently
using. We saw an interesting set of results, indicated by this chart, among

http://www.thenewstack.io

73Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Evaluation and Use of Other Container Orchestration Solutions

by Those Utilizing AWS Storage With Kubernetes

Source: The New Stack 2017 Kubernetes User Experience Survey. What were the other solutions your enterprise or organization evaluated?
What, if any, are currently in use? What specific storage volumes does your enterprise or organization use with Kubernetes? n=90.

Evaluated

Using

No other solution
was evaluated

Azure Container Service

HashiCorp Nomad

OpenStack
(e.g., Magnum)

Homegrown customization
of multiple tools or scripts

Apache Mesos
or Mesosphere

Amazon EC2
Container Service

Docker
(e.g., Engine or Swarm)

79%
24%

73%

56%

13%

7%

13%
39%

24%
3%

23%

22%

55%

60% difference

49%

26%

21%

22%

22%

2%

While consideration
is high, the conversion
rate drops among
AWS storage customers.

the subset of respondents who had also indicated they were using
Amazon AWS storage services in conjunction with their Kubernetes
deployments.

We’ve stated in The New Stack before that the rise of Kubernetes was
made possible by the revolution started by Docker. In 2016, Docker Inc.
began bundling Swarm orchestration capabilities into Docker Engine. So
it’s reasonable to assume that organizations have had ample opportunity
to evaluate Swarm.

Among the Kubernetes evaluators who responded to our survey, nearly
three respondents in four (73 percent) who use AWS storage with
Kubernetes gave Amazon EC2 Container Service some consideration. Very
few of these people (18 percent) actually ended up using ECS. The high
level of consideration is mostly because of AWS’s overall Infrastructure as
a Service (IaaS) market share. Usage levels among non-vendor

http://www.thenewstack.io

74Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Evaluation Considerations for Container Orchestration

7ource� 8he New 7tacO 2017 Kubernetes 9ser)xperience 7urvey. 5. 8o what degree were the following considered when evaluating
Kubernetes and other container orchestration solutions? n~313. Due to rounding, percentages may not always appear to add up to 100%

E
v

a
lu

a
ti

o
n

 C
o

n
s

id
e

r
a

ti
o

n
s

Importance of Consideration

Resource
optimization

Security

Easy or
simplified

management

Agility

Scaling

Don’t know or not applicableNot an important
criteria

Important criteria,
but not a requirement

Essential
requirement

71% 26% 3%

58% 37% 4% 2%

51% 41% 7%

45% 48% 8%

56% 39% 5%

1%

respondents were slightly lower for both ECS and Mesos/Mesosphere. Here
are a few comments from survey participants employed by businesses
with 100 employees or fewer, who evaluated these two platforms:

• “It’s hard work with K8s on top of AWS. After a year and a half, some
tools are growing up like kube-aws and others like kops still destroying
your cluster every time you update the cluster. Choose the right tool.
It’s very important and CloudFormation is mandatory if you wanna use
K8s in AWS and be safe.”

• “AWS need to integrate K8s as service like GCP; otherwise, we’ll
migrate.”

• “Mesos is very painful to use if you want to write your own scheduler:
you must compile your scheduler against the same version of
libmesos. So you are running, and libmesos doesn’t compile quickly or
easily.”

http://www.thenewstack.io

75Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Decision Criteria
Now that we know which platforms our survey participants were
considering, let’s look at the criteria respondents were using to evaluate
container orchestration offerings. We gave participants a list of five
categories for evaluating orchestration platforms, and asked them to rate
each one on a four-point scale, ranging from “Essential requirement” to
“Not applicable.”

Respondents overwhelmingly cited all five factors as important criteria,
with only resource optimization falling below half of responses for
essential requirement (45 percent). The ability to scale was rated essential
by 71 percent of respondents.

People currently evaluating Kubernetes were more likely than those using
it in production to view security as an essential requirement — 65 percent
of evaluators, compared to 45 percent of users. Here are some revealing
comments from two people in the users’ column:

• “Need a secure — really secure, not what is currently available or
proposed — method to access and manage data both in the clustered
application, between clustered applications and beyond.” [Software
company, 2 - 100 employees]

• “We run a fairly large Web shop (100M Euro in revenue per year). Our
application is/was monolithic and we needed a way to scale more on
demand. K8s provides the basis for scalability on-demand.” [101 -
1,000 employees]

Breaking Down Decision Criteria
When we break down responses to the decision-making criteria question
by the employee count of respondents’ employers, we find some
surprisingly stark differences in their patterns. Large companies (with

http://www.thenewstack.io

76Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Considered Essential When Evaluating Container Orchestration

(by Number of Employees)

Source: The New Stack 2017 Kubernetes User Experience Survey.
5. 8o what degree were the following considered when evaluating Kubernetes and other container orchestration solutions?
,ow many employees worO at your enterprise or organi^ation? 2�100, n=62; 101�1,000, n=43; "1,000, n=67.

2 - 100 employees

101 - 1,000 employees

> 1,000 employees
Resource

optimization

Security

Agility

Easy or simplified
management

Scaling
69%

74%
73%

51%
47%

67%

74%
58%

62%

50%
44%

59%

55%
38%
39%

Large companies
care more about
simple management,
security, and resource
optimization

greater than 1,000 employees) gave higher priority to simple management,
security and resource optimization than medium and small companies. In
particular, easy or simplified management garnered 67 percent of
respondents on the upper tier, compared with a combined average of 53
percent for the other two tiers. Respondents with middle-tier companies
(100-1,000 employees) rated agility (74 percent) and scaling (74 percent) as
equally essential.

Even though easy management was less likely to be an essential
requirement for smaller companies, many respondents raved in their
comments that Kubernetes was easy for them to use. They cited its APIs,
its pluggable nature, and its ease of deployment across multiple clouds.

Next, we broke down responses to the decision criteria question by the
current state of their Kubernetes deployments. Among those few
respondents who evaluated and then rejected Kubernetes, 68 percent

http://www.thenewstack.io

77Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Considered Essential When Evaluating Container Orchestration

(by Status of Kubernetes Evaluation)

Source: The New Stack 2017 Kubernetes User Experience Survey. Q. To what degree were the following considered
when evaluating Kubernetes and other container orchestration solutions? No current use, but evaluated or used Kubernetes
in the past, n~19; Evaluating or running a trial of Kubernetes, n~60, Using Kubernetes in production, n~197

No current use, but
evaluated or used
Kubernetes in the past

Evaluating or running
a trial of Kubernetes

Using Kubernetes
in production

Resource
optimization

Security

Agility

Easy or simplified
management

Scaling
58%

69%
73%

63%
60%

53%

68%
53%

60%

54%
65%

45%

38%
51%

44%

Evaluated, then
rejected. This reflects
concerns that
Kubernetes is unwieldy.

cited agility as an essential requirement. This may reflect their concerns
that Kubernetes is a bit unwieldy, which is an opinion that we’ve heard
expressed in IT communities and conferences as well. It’s still a young
project, so perhaps it shouldn’t be surprising that folks do complain about
documentation being incomplete, and that not everything always works
right out of the starting gate.

Here are some critiques respondents shared with us about Kubernetes:

• “There’s a lot of rapid changes, which makes it hard to deploy a very
large environment “across” as you have to continue going back to
adjust things.” [101 - 1,000 employees]

• “Pain in the ass. Poor documentation on installing and operations.
Components changing to fast to make sense of best options. Choices
vary wildly across cloud providers. Difficult to choose based on limited
info.” [>1,000 employees]

http://www.thenewstack.io

78Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

• “None of these are truly 100% production ready. K8s itself seems to
have several issues running at scale and in production. Applications in
containers/pods in K8s need to consider the environment and require
tuning when porting over. Numerous K8s components are not proving
as robust at scale during massive cluster events that can result in
service outages in some cases. This arena needs further
improvements and maturity, often too bleeding edge, resulting in the
need to be constantly patching and upgrading to get features and fixes
needed.” [>1,000 employees]

• “It’s a lot of hype with just enough cool stuff to make it not quite not
worth the effort. An extraordinary amount of engineering has gone
into the Kubernetes API with a healthy chunk of its functionality not
exposed via the OSS command line tools and often poorly
documented (e.g., RBAC). Perfect if your intent is to make money
selling SaaS products. I’m keeping a candle lit that Kube doesn’t turn
into another Orchestration-System-That-Shall-Not-Be-Named (*cough*
OpenStack *cough*). :)” [unknown company size]

• “Lots of ways to do it wrong, no production level guides for setup. Easy
tools leave much to be wanted. Automated tools were not good for
production.” [2 - 100 employees]

• “Kubernetes is full of bugs and is not the application delivery Holy Grail
everyone likes to think it is.” [101 - 1,000 employees]

• “Actually Kubernetes is hard to manage, I didn’t see that coming. After
you step away from single master and a few minions, and your teams
start to use the clusters you built, you will see what am I talking
about.” [101 - 1,000 employees]

• “More headcount required to operate. Due to the rapid change in these
platforms, more headcount is required to keep everything updated

http://www.thenewstack.io

79Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

and working effectively.” [101 - 1,000 employees]

Reasons to Use Kubernetes
Besides having general requirements, survey participants told us why they
selected Kubernetes. Many cited its popularity among their key criteria.
One commenter cast a negative light on that popularity, saying too many
people “had drunk the Kubernetes Kool-Aid.” Some did cite the strength
of its community, while others appreciated the strong level of support
from recognized companies including Google and Red Hat.

One emerging theme was that Kubernetes was technically superior, at
least presently. As one respondent explained:

• “It was the first container-centric orchestrator offering a complete set
of features needed for building microservices style applications.
Service discovery was leagues ahead of everyone else, and it came
with configuration management features. The others seem to be just
catching up now.” [2 - 100 employees]

Others appear to be expecting Kubernetes to maintain its current edge in
the orchestration market on account of its perceived technical
competitiveness. As others told us:

• “Kubernetes is awesome. Azure has a good grasp on where K8s is
heading but their PVC implementation sucks and is behind. GKE is the
strongest implementation out there. AWS is behind.” [101 - 1,000
employees]

• “Mesos does not provide an orchestration layer...besides that, the
overhead involved to run Mesos is huge and the stability and
scalability of the platform is not there. Cloud Foundry was dismissed
due to it really being a “single-vendor” open source project with no
clear mission and Pivotal seems to be moving towards K8s

http://www.thenewstack.io

80Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

themselves. Besides that, Cloud Foundry only enables hosting two-tier
applications as their composition model is severely limited to using
the app-broker bind model. None of the big-three cloud providers
provide a good enough model captured inside a single hosted service.
Google Cloud gets the closest. OpenShift is just abstracting K8s with
limited added value, but at an additional cost. Hence using K8s open
source, hosting it ourselves, automated the infra and K8s deployment
to all platforms we need.” [100 - 1,000 employees]

• “Speed, scalability and security are important to us. We started with a
homegrown solution based on earlier versions of Docker with Consul
for service discovery over a bridged network. Things did not turn out
well for us. The homegrown solution was hard to scale and
maintenance was a nightmare. We played around with Apache Mesos,
but it just did not suit our needs. When Docker Swarm was released we
already had our cluster running K8s. Docker Swarm did not have the
correct implementations for features we already had in K8s.” [101 -
1,000 employees]

• “Container orchestration is really hard to do right :). Most of the
solutions are either too complicated (for example Mesos and DC/OS)
or work incorrectly (Rancher, Kontena and other small players). Also
there are “enterprise” solutions like Cloud Foundry which are
unnecessary complex. We work in the IoT area and we have one more
criteria for the container orchestration solution: it should be possible
to move the system to bare metal. That’s why we use Nomad at the
moment for IoT, but might evaluate K8s in the future.” [2 - 100
employees]

• “Not all platforms are equal in terms of capability, stability and scale.
VMware misses the core services that other infrastructures provide.
OpenStack != OpenStack in terms of compatibility of APIs between

http://www.thenewstack.io

81Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

versions and distributions. Google Cloud and AWS are the most stable;
Azure is catching up. Bottom line is that there is a lot of diversity
underneath, which imposes risk. K8s OSS does not test on all
platforms, so we run validation of builds we want to adopt, building
our own version comprised of the changes we need and passed
validation. There is no vendor delivering a cross-platform! Heptio was
that promise, which never happened, too bad.” [101 - 1,000 employees]

Roadblocks to Kubernetes Adoption
Kubernetes’ perceived edge in the container orchestration market, as
young as that market is today, is neither definitive nor definite. Its survival
may yet depend on competitors’ ability to match customers’ expectations
for the essential requirements for orchestration. In the future, enterprises
may look for solutions that are bundled or included with larger platforms,
or they may simply accept those solutions once they’ve discovered they
were already bundled with the platforms in which they’ve already
invested.

The Kubernetes development community needs to address the inhibitors
to its adoption, especially among evaluators who have yet to commit.

Inhibitors and Obstacles
As we’ve seen, agility is more important to people who evaluated
Kubernetes in the past, but chose another path. We explicitly asked this
group, along with the group currently evaluating Kubernetes but not
having yet committed to it, what is inhibiting their adoption?

We gave these groups a list of four categories of adoption inhibitors, and
asked them to rate each one on a five-point scale, ranging from “To a
great extent” to “Not applicable.” The complexity of Kubernetes
implementation was inhibiting adoption to a great extent for 36 percent of

http://www.thenewstack.io

82Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY
Inhibitions to Kubernetes Adoption

(Not Asked of Those Using Kubernetes in Production)

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. To what degree are the following inhibiting your enterprise or organization's future adoption of Kubernetes? n~133.

Re
as

on
s

fo
r
 N

o
t

U
s

in
g

 K
u

b
e

r
n

e
te

s

Impact of Reason on Decision

Don’t know or not applicableVery little Not at allSomewhatTo a great extent

Manual
orchestration

is adequate

Use of
competing

solution

Other high
priority projects

Complexity of
implementation
& maintenance

36% 39% 16% 4%5%

33% 27% 17% 7%16%

14% 29% 31% 9%17%

7% 20% 24% 7%42%

respondents. Some three respondents of four in these subgroups cited
complexity as an important inhibiting factor to some degree. Yet concerns
about complexity were more pronounced among those whose
organizations had evaluated and rejected Kubernetes.

The other big inhibitor was simply the higher priority for other projects.
Some three respondents in five of these subgroups cited higher-priority
projects elsewhere as an important concern, with one in three giving
Kubernetes’ low priority their highest rating. For these companies,
Kubernetes adoption may have to wait until other organizations have
found success with it.

One other factor was much less likely to be holding adoption back.
Respondents made clear their belief that manual orchestration is not an
option, with only seven percent of respondents in these subgroups citing
a preference for manual orchestration as their key inhibitor. Of those

http://www.thenewstack.io

83Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Implementation Assistance

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. Who helped implement the initial Kubernetes implementation? Select all that apply. n=216.

Other

External company with
container, Kubernetes

or DevOps focus

Another internal
IT team

My team
or myself

12%

9%

78%

1%

whose organizations don’t use Kubernetes, 42 percent said manual
orchestration was no inhibitor at all. Only 14 percent cited their
organization’s use of a competitive solution as a significant inhibitor.

Implementation: The Good, the Bad and
the Ugly
We’ve established that Kubernetes has required a reputation for
complexity of implementation, particularly among institutions that have
rejected deploying it in production. Is any part of that reputation shared
by those organizations that have adopted it?

We asked some questions of adopters to figure this out. To give you a
better idea of the extent of this group’s hands-on relationship with
implementation, some 78 percent of respondents told us they or their
teams were directly responsible for implementing Kubernetes, as

http://www.thenewstack.io

84Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Meeting Overall Expectations for Implementation Time

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. Did the implementation take more or less time than expected? n=182.

Don't know or
not applicable

Less time
than expected

As much time
as expected

More time
than expected

38%
15%

41%

6%

represented in the chart below.

Implementation Takes Longer than Expected
We asked these implementers whether their organizations’
implementation of Kubernetes consumed as much time as they initially
estimated, or instead more or less time. Some 38 percent of respondents
said it took longer than expected, while only 15 percent said it took less
time. Complexity may be to blame, if only partly.

For those who said Kubernetes implementation took more time than they
expected, the percentage declined as their experience with
implementation increased. Specifically, those with broad implementations
registered 14 points lower than those just starting their implementation,
for taking too much time. This clearly suggests that a good number of
implementers — though certainly not all — do feel more comfortable with
Kubernetes given time, once they’ve taken the plunge.

http://www.thenewstack.io

85Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Meeting Expectations of Time Required:
Initial vs Broad Implementation

Source: TNS 2017 Kubernetes User Experience Survey. Q. Did the implementation take more or less time than expected? Initial Kubernetes
Implementation, n=104; Broad Kubernetes Implementation; n=78. Due to rounding, percentages may not always appear to add up to 100%

Initial Implementation

Broad Implementation

-6% difference

-7% difference

14% difference

Don't know or not applicable

Less time than expected

As much time as expected

More time than expected
45%

31%

38%

44%

12%

19%

6%

6%

One commenter who works in a small business offered this bit of hopeful
insight:

• “[It] took much more time than expected because of the complexity of
deploying and managing the K8s cluster, and the poor documentation
there was one year ago. Today is much easier.”

While the installation and configuration stages may be causing delays,
several commenters explained that organizational dynamics were the
biggest time drain. Here are some examples:

• “Organizational and procedural hurdles are hard to overcome. You
need a company-wide initiative to even give this a chance.” [>1,000
employees]

• “We underestimated the amount of work it would take for everyone to
adopt continuous delivery, but that had been overdue anyway.” [101

http://www.thenewstack.io

86Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Kubernetes Meeting Primary Goals:
Initial vs Broad Implementation

Source: The New Stack 2017 Kubernetes User Experience Survey.
5. 8o what degree has Kubernetes met the primary I8 or business goals it was selected to address?
Initial Implementation, n=92; Broad Implementation, n=�1.

Minimally
or not at all

Substantially

Completely

Initial Implementation

Broad Implementation

-11% difference32%

43%

67%

57% 10% difference

1% difference

- 1,000 employees]

Obviously, the move to microservices architectures is a process that
cannot easily be rushed.

Is There a Market Opportunity for Easing
Implementation?
If Kubernetes is complex and takes time to implement, perhaps there’s an
opportunity for emerging companies to offer a unique value proposition
for helping out. Perhaps. But so far, not yet.

We asked participants in both the initial and broad stages of Kubernetes
adoption whether the current status of that adoption has met their
organizations’ expectations completely, substantially or minimally. While
only 32 percent of initial-stage respondents say Kubernetes has
completely met their companies’ expectations, some 43 percent of
broad-stage respondents are completely satisfied. That’s certainly the

http://www.thenewstack.io

87Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

right direction. And although fewer than half of the broad-stage group are
completely satisfied, keep in mind that, at just two years of age, the
Kubernetes ecosystem, or market, is a whole year younger than what
some analyst firms consider a requirement for a mature market.

Some nine percent of total respondents told us they did rely on help and
support from an external company to implement Kubernetes in their
organizations. It appears that hiring such a company did have some
impact, as only one in five of these respondents (20 percent) said the
implementation took longer than expected — an improvement over the
38 percent of all Kubernetes users that complained about time
consumed.

Only 31 percent of people with broad implementations said
implementation took longer than expected — another improvement, this
time over the 45 percent of those with initial implementations that
complained about time consumed.

Overall, Kubernetes is winning the expectations game. According to 173
production-level users of Kubernetes, a full 99 percent said the platform
has either completely or substantially met their IT or business goals.
Granted, these were companies for which Kubernetes passed their
evaluation phase. During an evaluation phase, the expectations for a
product being evaluated typically become more closely aligned with that
product.

While using a vendor distribution is supposed to make things easier (at
least, so vendors say), just 47 percent of those who only cited a
community-supported project, rather than a vendor-based product, said
they were completely satisfied. With greater investment may come greater
expectations.

http://www.thenewstack.io

88Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

Kubernetes Users Share Their
Experiences
The consensus among participants in this survey is that Kubernetes
reduces code deployment times, and increases the frequency of those
deployments. However, in the short run, the implementation phase does
consume more human resources. To address these issues, the structure of
IT organizations may need to change.

Here are some comments participants shared with us about the impact of
Kubernetes on their organizations.

• “300 deployments per day instead of... 0.5. Test cycle in the team gone
from approximately 1 hour to 5 minutes. Enabler for continuous
delivery.” [2 - 100 employees]

• “When evaluating DevOps roadmaps, K8s comes with so many
features built-in that would require minimal effort and accelerate our
roadmap as well as allow us to have a cloud agnostic solution. It also
minimized cost and resources in use for the applications we were
deploying.” [101 - 1,000 employees]

• “We reduced our infrastructure bill by four times. Now it just works and
we don’t spend time debugging it. Developers can deploy their
application easier and in a more sane way (using YAML descriptions)...
We have ingress with SSL. We finally handle secrets properly. Big
impacts on the security side.” [2 - 100 employees]

• “Loss of fear of introducing additional independent services, enabler of
microservice architecture. Additionally, we can now spin up
production-identical clusters for load and performance testing, and/or
to validate large changes in infrastructure or architecture. A really
powerful thing.” [>1,000 employees]

http://www.thenewstack.io

89Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

• “Kubernetes has enabled us to bypass our system engineers allocating
resources for each new project and experiment. We’ve gone from
spinning up trial runs in minutes from waiting days for VM resources.”
[>1,000 employees]

• “It’s much easier for developers to get their applications running on
the cluster now than before. Before, understanding a deployment
system like Chef was necessary, which limited the number of people
who could support and deploy applications. Now, most developers
grasp the basic Kubernetes concepts and can deploy applications with
relative ease.” [2 - 100 employees]

• “Devs have more ownership: Before to scale an app we needed to
create a server, configure it, deploy the latest code and add it to load
balancers. So it needed involvement of the infra guys (my team), the
app guys, and it was too painful. Now they can just set the number of
replicas and it’s done. Or even use HPA. Also, devs have the possibility
to change configuration files (via configmaps) of web servers or
monitoring daemon on their pod. Before, they needed to ask us, as
those changes were handled via Chef. . . Ops team has more time: We
are not a bottleneck for the operations just listed, and that gives us
more time to do things and not maintain. . . We can easily reserve
instances on AWS, since all fits in the K8s cluster. We couldn’t before,
as when an app load changed, the servers in AWS needed to be
changed and it was not easy. So we save money. . . The 90% of the
pages we receive are capacity problems. With HPA and cluster auto-
scaler, we can eliminate or reduce them significantly. For example: we
only receive pages for things on our legacy infrastructure and not on
Kubernetes, in general.” [101 - 1,000 employees]

• “We save $800 month in CI/CD using Jenkins in K8s. We reduced 300%
our deployment time process, and saving 15% of infrastructure cost

http://www.thenewstack.io

90Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

using autoscaling.” [2 - 100 employees]

Although success may be measured by Kubernetes’ overall impact on
organizations and how they work, the initial point of impact comes at the
time of setup. Here is just a sample of the keys to the platform’s success
that participants shared with us.

• “Having kube-admin to take care of some initial setup really helped.
Also, KubeCon’s conference videos and work by the Cloud Native
Computing Foundation.” [>1,000 employees]

• “Having Google take care of the hardware, networking, logging, etc. I
would have given up, if I had to do it all myself.” [2 - 100 employees]

• “The ability to create “operators” or replace part was key. For instance,
we had to replace the kube-proxy with an iptables implementation
before it existed in Kubernetes. Same thing for the Ceph RBD
provisioner — I deployed an implementation in late 2014. Then, the
quality of the API allowed for easy development of a pipeline manager
optimized for our need (currently, less than 10 seconds between git
push and updated deployment; heading for subsecond is the next
challenge).” [2 - 100 employees]

• “Lots of communication across teams, many back-and-forth cycles of
deploying applications and seeing what issues arise.” [101 - 1,000
employees]

• “Kubernetes is continually improving and bugs are getting fixed: It
doesn’t feel like my issues are going into a black box and never heard.
Also, K8s is written in Go, which makes writing patches very
accessible.” [2 - 100 employees]

• “Linux knowledge, getting broad support from across the team, early
application success.” [>1,000 employees]

http://www.thenewstack.io

91Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

USER EXPERIENCE SURVEY

• “[I recommend building] your own version from K8s upstream,
leverage supporting tools and automate infrastructure and K8s
deployment on the infrastructure to be able to rebuild, test, validate
quickly.” [101 - 1,000 employees]

Other participants advised potential Kubernetes users to have more
realistic expectations:

• “Developing in-house expertise in the underlying technologies has still
been essential even though we’re using a heavily community-
supported system. Application design and tuning for Kubernetes
deployment presents its own set of challenges. Even though
Kubernetes and its technologies reduce overall system complexity,
there’s still a substantial amount of detail to understand when
supporting and debugging production deployments.” [2 - 100
employees]

• “K8s is not a silver bullet and it still requires a lot of Ops. The multi-
cloud vendor ideal is by far harder to achieve, even using a container
orchestration environment like K8s.” [>1,000 employees]

• “Kubernetes is still very young in many places. It still has lots of sharp
corners, for example cron jobs are pretty much useless for most
normal workloads. But luckily it’s being reworked.” [101 - 1,000
employees]

One could easily make the argument that the Kubernetes ecosystem, such
as it is, has yet to reach a reasonably mature state, and that any
judgments we make at this point would certainly be preliminary at best.
But it is remarkable that a major component of the world’s data center
virtual infrastructure can evolve to this point, with so many satisfied
implementers, just two years after the release of version 1.0.

http://www.thenewstack.io

92Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM 92

RETHINKING THE
DEVELOPER PIPELINE

In the chain of events that defines the modern
evolutionary path of the application — a path that
now includes microservices, persistent containers,
orchestrators, monitoring tools and “kubelets” —

when does the security part begin?

“There’s a lot more responsibility that’s on the developer, or at least
in the developer’s workflow, to secure that application,” said John
Morello, CTO for container security platform provider Twistlock. “In
the new world of containers, your developers need to … re-create
the images that are vulnerable. And then they need to deploy those
new images to replace whatever’s out there.”

Learn more about Morello’s perspective on where security fits into
the orchestrator-driven itinerary. Listen to the Podcast.

John Morello is the chief technology officer at Twistlock. As CTO,
John leads the work with strategic customers and partners and
drives the product roadmap. Prior to Twistlock, John was the chief

information security officer of Albemarle, a Fortune 500 global chemical
company, and spent 14 years at Microsoft.

http://bit.ly/2sOzS1A
https://soundcloud.com/thenewstackmakers/rethinking-the-developer-pipeline
https://soundcloud.com/thenewstackmakers/rethinking-the-developer-pipeline

93Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO
KUBERNETES
by KRISHNAN SUBRAMANIAN, JANAKIRAM MSV, CRAIG MARTIN

T
he rise of containerization, first championed by Docker, has
changed the dynamics of deploying and managing software.
Developers are using containers on their local machines, config-

uring a variety of environments for their own purposes without any reli-
ance whatsoever upon IT. Meanwhile, enterprise IT teams are under pres-
sure to support all levels of application deployment, from developers’
laptops to their own production environments.

Containerization fulfills one key goal of modern IT: It shifts the objective of
deployment from virtual machines (VMs) and virtual servers to
applications and workloads. Developers can focus on building
applications and operators can switch to managing applications rather
than managing VMs, in order that the applications contained within them
run smoothly.

It’s a worthy goal. But making this mindset shift requires organizations to
absorb and integrate a concept they probably would have never
considered before, at least not voluntarily: orchestrated workload
distribution.

http://www.thenewstack.io
https://thenewstack.io/author/krishnan-subramanian/
https://thenewstack.io/author/janakiram/
https://thenewstack.io/author/craig-martin/

94Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

We’ve compiled several lists of the most important considerations that
various stakeholders should make — cultural, organizational, practical,
and technical — before you make an affirmative decision to deploy
Kubernetes. Contributing their expertise to this chapter are:

• Krishnan Subramanian, principal analyst, Rishidot Research, LLC.

• Janakiram MSV, principal analyst, Janakiram & Associates.

• Craig Martin, senior vice president of engineering, Kenzan.

Considerations Before Selecting
Kubernetes
Kubernetes is but one permutation of orchestrated distribution. At the
moment, it’s the one with the largest plurality of users, but this horse race
has just started. Docker Swarm and Mesosphere Enterprise DC/OS are
competitive players. If you do select Kubernetes, it will be after you’ve
made a multitude of important considerations.

What the CIO Needs to Consider
The typical goals of the IT department are to provide the organization
with robust and reliable applications. Yet as IT faces the challenges of
modernization for today’s economy, the chief information officer of the
organization not only expects IT to provide robustness and reliability, but
also become more agile and more efficient with respect to resource
consumption. Kubernetes helps IT in its quest to optimize resources and
operate at a much higher scale than any time in the past.

The key to the success of the modern enterprise lies with two key areas of
empowerment:

1. How IT empowers developers by delivering the foundational services
they need, at the scale the business needs.

http://www.thenewstack.io
http://rishidot.com/about-us/meet-the-team/krishnan-subramanian/
https://www.janakiram.com/
http://kenzan.com/team-member/craig-martin/

95Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

2. How IT empowers DevOps with the tools and support they need to
deliver software to customers with greater agility.

Kubernetes is the secret sauce transforming IT from the gatekeepers to
the innovators of the modern enterprise. Here’s what the CIO will need to
consider with respect to how Kubernetes can serve as the vehicle for that
transformation:

Business Considerations
• Value assessment: It’s important that the CIO make a strategic

assessment of the business value of IT transformation, and how
containers and Kubernetes can impact the organization’s
transformation. An organization may find business value from
something that adds revenue to the organization, or something that
gives them strategic competitive advantage. Kubernetes is not a magic
pill that can cure all IT woes. CIOs should get a buy-in from all
stakeholders, which requires a careful discussion of potential
disruptions, and a plan for how to mitigate them as Kubernetes is
being rolled out. Stakeholders here may include IT administrators,
developers and business users. Modern IT involves a buy-in from all
these stakeholders. This helps usher in cultural change, along with the
technology and architectural changes brought in by modernization.

• Legacy assessment: Kubernetes supports legacy applications
through stateful storage options, although these are typically not ideal
workloads for Kubernetes. CIOs should prioritize the right high-value
workloads for migrating to Kubernetes, from both a technical and
business perspectives. There may be a cost associated with
architectural changes to applications, and CIOs should consider these
costs as well. For instance, a mission-critical application might get
disrupted — leading to a loss in business value — if it gets moved to
Kubernetes just for the sake of using Kubernetes.

http://www.thenewstack.io

96Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

• Process assessment: Using a platform like Kubernetes can provide
agility to IT and can help deliver business value fast. The CIO should
think through their organization’s entire value delivery process, taking
into account potential pitfalls, and deciding if the investment in
Kubernetes is the right one. ROI can be maximized when architectural
changes to applications can be coordinated along with the move to
containers and Kubernetes.

Technology Considerations
• Paradigm shift: Using containers and orchestrators requires a

mindset change among IT decision makers, especially CIOs. Instead of
thinking about the reliability of applications, the IT professional needs
to think in terms of their resilience. It is important for CIOs to usher in
this mindset change for both IT and developers.

• Architecture shift: When infrastructure and application components
are treated as cattle instead of pets, you’ll soon need to rethink
existing application architectures. CIOs should be prepared for this
shift, and get buy-in from developers well ahead of time.

• Placement shift. Kubernetes may be deployed across multiple cloud
providers, or with on-premises infrastructure. The CIO should develop
a deployment strategy based on the organization’s needs first, and the
needs of the infrastructure later.

• Storage shift: It is important for the CIO to identify whether the
organization’s applications require stateful storage. They should
ensure that the needs of stateful, storage-oriented apps — needs that
won’t disappear under Kubernetes — will be supported.

• Declaration shift: With Kubernetes, you always need to consider the
system as a whole, and tap into its declarative model for deployments.
This requires a mindset change both at the infrastructure and

http://www.thenewstack.io

97Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

application levels. Kubernetes espouses a declarative model, as
though it were asking you, “tell me what you want, and I’ll try to do it,”
as opposed to the classic, imperative model, “please instruct me as to
how I should create exactly what you want.”

People and Process Considerations
• Talent considerations: A move to Kubernetes will require cross-

functional talent. The CIO should have a strategy in place for either
hiring new talent or retraining existing talent, not only to better
comprehend the new technologies, but to embrace the process
changes that come with a move of this scale.

• Cultural considerations: Just embracing Kubernetes is only one leg
of the bigger journey. The time for complete compartmentalization of
development teams from operations teams in the modern enterprise,
is over. And although there are a number of variants of this concept
called DevOps, they all have in common the notion that they should
share responsibility, and communicate more directly, with each other.
Kubernetes is not a collaboration platform for Dev and Ops, or for Dev
and Sec and Ops, or whatever syllabic mixture is in vogue today. But
adopting it properly, and embracing the concept of distributed
systems orchestration, does require the people who create
applications and the people who manage them to, more than
infrequently, have lunch together and swap stories. It is the
responsibility of the CIO to empower stakeholders to facilitate this
communication, so that these teams don’t have to wade through
bureaucracy just to have a constructive chat.

• Failure considerations: Containers and orchestrators provide an
opportunity for developers to experiment and fail fast. The CIO should
mandate this allowance, and empower stakeholders to experiment in such
a way that failure becomes the first step toward remedy and improvement.

http://www.thenewstack.io

98Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

What the IT Implementer Needs to Consider
Kubernetes is very powerful at container orchestration, but it isn’t
necessarily a perfect fit for every development context. Key stakeholders
within organizations should ask themselves these questions first:

Will your applications need a distributed architecture
(e.g., for microservices)?
While Kubernetes can work in a monolithic infrastructure, its focus is on
orchestrating a large number of small services at big scale. What you will
need to consider is whether the services you run today, plus those you
plan to run in the future, can be decoupled from the application that uses
them. Put another way, can the code that does the work be deployed
behind an API? If so, you can use Kubernetes to orchestrate those services
separately from the clients that call upon them. That separation is
essential to making those services scalable.

Are monitoring tools in place to support a Kubernetes
deployment?
Infrastructure monitoring helps ensure the health and availability of
resources — storage, CPU, network — for the applications it serves. If you
don’t have such tools in place already, you should invest in a robust
monitoring mechanism that can track the health of underlying nodes, as
well as that of the workloads running in Kubernetes. There are open
source and commercial monitoring tools that integrate well with
Kubernetes environments. Start considering monitoring tools, along with
your other tools, right away. We touch more on monitoring considerations
in the next chapter, as Kubernetes can bring about unique challenges.

Are your applications container ready?
Containers are different from virtual machines. Everyone in the
organization — including developers, system administrators and DevOps

http://www.thenewstack.io

99Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

practitioners — should have a basic understanding of containers. If they
don’t yet appreciate the business value delivered through containerization
(and not everyone will at first), they should at least respect the leaders of
the organization and their reasoning behind this investment. Teams
should first adopt containers in non-production environments such as
development, testing, QA and staging.

Are your people container ready?
Adopting Kubernetes comes much later in the transition process than
adopting containers. Docker adds value to dev/test environments and to
continuous integration / continuous development (CI/CD) processes. That
value should already have been added before starting with Kubernetes
— or, for that matter, any orchestrator. A full appreciation and
acknowledgment of the business and technical value of containers are
prerequisites before you can use Kubernetes effectively to manage
containerized workloads in production. Management should be on board
with the benefits of adopting container technologies. Most importantly,
all stakeholders should be trained on working in a distributed systems
environment with containers. Google offers certified training for
Kubernetes professionals, specifically for Google Cloud Platform.

Are you planning to migrate legacy applications into
Kubernetes?
The migration approach you choose for legacy migrations might be
challenging, whatever it may be. One common approach, for example,
would be to deploy an API Gateway, then decompose the monolith into
Kubernetes pods one feature set at a time, over an extended period of time.
It’s an effective and manageable approach, but it’s not necessarily easy.

Are you planning, instead, to start with a fresh greenfield
deployment?
The challenges of developing and deploying applications to a completely

http://www.thenewstack.io

100Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

fresh Kubernetes environment are altogether different. You may be freer to
take risks with what are essentially completely new technologies. At the
same time, you’ll be encountering the pain points along with everybody else.

Will you choose a commercial version or a community
distribution?
Kubernetes is available as a stock open source distribution, or as a
managed commercial offering. Depending on your internal IT team’s skill
set, you may either choose the stock open source version available on
GitHub, or purchase a commercial orchestrator based on Kubernetes from
a vendor, such as CoreOS and Canonical, that offers professional services
and support.

Are you ready to invest time and energy in building your
own container images?
A containers is based on a pre-configured image. Such an image typically
includes the base operating system. Unless the contained application is a
compiled binary, the image may also include the libraries and other
dependencies upon which it may rely. Your organization may wish to
invest in a private registry, which stores both base images and custom
images. Some commercial registries come with image scanning and
security features that scan for vulnerabilities. Even so, a recent study
examining images stored on the Docker Hub registry found some four
images in five contain at least one documented security vulnerability. So
you may choose instead to completely compile your image components
from binary files, using libraries your organization knows and trusts to be
safe. Alternately, you might consider an architectural approach suggested
by CoreOS engineer Brian Harrington, called minimal containers — a more
spartan approach to assembling containers.

Is your storage ready for high-performance workloads?
A Kubernetes cluster may be based on distributed file systems like NFS,

http://www.thenewstack.io
http://bit.ly/2uJMGYG
https://blog.acolyer.org/2017/04/03/a-study-of-security-vulnerabilities-on-docker-hub/
https://twitter.com/brianredbeard?lang=en
https://github.com/brianredbeard/minimal_containers

101Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

Ceph and Gluster. These file systems may be configured on solid-state
storage backends that deliver high throughput. Stateful applications
running in Kubernetes can take advantage of these underlying storage
primitives, which can make all the difference for running production
workloads.

What is your expected level of uptime?
Your customers’ service level agreement (SLA) requirements will have a
major impact on every aspect of your Kubernetes deployment: how you
configure your environment, how you configure each application, how
much complexity you can withstand, how many simultaneous
deployment pipelines you can support … and the list doesn’t stop there.
All of these variables impact the total cost of your application. For a bit of
context, Table 4.1 below explains the expected downtime for each “9” in
your availability goal (from a book by Susan J. Fowler). It’s up to you to
determine the amount of effort required for your organization to achieve
each level.

Do you have, or plan to have, a release management
system?
One of the key benefits of moving to Kubernetes is automating the
deployment of applications. Deployments in Kubernetes support rolling
updates, patching, canary deploys and A/B testing. To utilize these

“Nines of Availability” Downtime Allowance
Availability Per Year Per Month Per Week Per Day

99.9% 8.76 hours 43.8 vminutes 10.1 minutes 1.44 minutes

99.99% 52.56 minutes 4.38 minutes 1.01 minutes 8.64 seconds

99.999% 5.26 minutes 25.9 seconds 6.05 seconds 864.3 milliseconds

TABLE 4.1: How downtime in “nines” translates into real time.

http://www.thenewstack.io
https://books.google.com/books?id=-_OeDQAAQBAJ&pg=PA28&lpg=PA28&dq=%22five+nines%22+availability+%22864.3%22&source=bl&ots=n8WyfkuG0R&sig=qlXbnR72ge4P8NOLP9dNQJRweR0&hl=en&sa=X&ved=0ahUKEwimvLGYnLrVAhVMySYKHQOCBwsQ6AEISjAG#v=onepage&q=%22five%20nines%22%20availability%20%22864.3%22&f=false

102Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

capabilities, you should have in place a well-configured build automation
and release management platform. Jenkins is one example of a broadly
deployed automation tool that integrates well with Kubernetes, by
building container images from source code that can be pushed to both
production and nonproduction environments.

Are you prepared for all the logs?
Kubernetes supports cluster-based logging, allowing workloads to log
container activity in a centralized logging destination. After a cluster is
created, a logging agent such as Fluentd can absorb events from the the
standard output and standard error output channels for each container.
Logs generated by such providers may be ingested into Elasticsearch and
analyzed with Kibana.

What Kubernetes Needs for Production
It’s no longer always the case that a production environment must be
physically, or even virtually, barricaded from a development environment.
That said, Kubernetes will have requirements for production above and
beyond what’s needed in a development or a testing environment. Here
are the key factors you should evaluate, and how they differ.

High Availability and Resilience
The meaning of the phrase “high availability” may differ depending on its
context. So for this discussion, we’ll focus on deploying Kubernetes in
such a way that it can survive a partial subsystem failure. This quality of
survivability is often referred to as resilience (and sometimes as resiliency).
Remember, Kubernetes is not the whole container system, but an entity
deployed in a data center. It’s subject to the same operating conditions
and perennial threats as any other data center software. When we think
about high availability in a Kubernetes environment, we tend to divide it
into three distinct aspects:

http://www.thenewstack.io

103Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

1. Infrastructure availability determines whether the base
infrastructure that Kubernetes runs on is highly available and
distributed regardless of the environment.

2. Kubernetes availability ensures that the environment never has a
single point of failure, and that the components of the orchestration
system are properly and proportionally distributed along the same
lines as the infrastructure.

3. Application availability focuses on the application and ensuring
that all pods and containers are achieving the correct level of
availability. Based on the needs of the application, the application
components will be loosely distributed across the Kubernetes
environment, which itself is distributed across the infrastructure.

Since Kubernetes may be installed on several public and private
Infrastructure as a Service (IaaS) platforms, the capabilities and properties
of those platforms collectively frame a Kubernetes installation’s inherent
resilience. For example, what is the level of partitioning an IaaS may
provide?

Your public cloud’s IaaS platform is made up of subdivided deployment
locations. AWS calls these locations “regions” and the subdivisions
“availability zones,” and other major cloud providers have followed suit.
Kubernetes may be deployed across those zones. But by default,
Kubernetes always deploys a single master, regardless of how many zones
you have. In a high availability scenario (which is the point of multiple
zones anyway), having the master and the control plane on a single zone
creates a single point of failure.

Several vendors, and other participants in the Kubernetes community,
have come up with high availability mode installation processes, where
there are multiple masters in the cluster, and preferably one master per

http://www.thenewstack.io

104Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

zone. This way, any container runtime at any location can survive one of
those zones failing. So if your IaaS has two zones, you should have at least
one master per region for high availability.

The most common, and typically most recommended, approach for
handling this is with a multi-master Kubernetes environment. In this
scenario, only one of the masters is “elected” as the live master, so if it
goes down, a new master is elected. This new master is then used for
handling all scheduling and management of the Kubernetes environment.

Kubernetes clusters are essentially sets of associated worker nodes. Since
the generator of your business value is running on these clusters, it makes
sense that each cluster is deployed across as many logical partitions as
are available.

NOTE: It’s considered best practice to dedicate your master node to
managing your Kubernetes environment, and use worker nodes
exclusively to host and run all the pods. This allows for a full separation of
concerns between Kubernetes and your applications.

With a private IaaS, you can still partition servers into zones. While each
private IaaS configuration may be as unique as a snowflake, there are
some concepts common to all of them. Whether your IaaS is public or
private, your storage and networking partitioning should correspond to
your compute partitioning. In the data center, you would have redundant
storage area network (SAN) capabilities and redundant top of rack and
end of rack networking capabilities that mirror the redundancy in your
blade enclosures. This way, you can provision redundant network, power,
compute and storage partitions. With a public IaaS, each service provider
handles storage and networking capabilities differently, though most build
in partition redundancy. As for networking, you should make use of your
IaaS’ load balancer for exposing Kubernetes service endpoints.

http://www.thenewstack.io

105Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

Ultimately, all this low-level resilience from your IaaS allows Kubernetes to
support replica sets, which ensure that specified numbers of pod replicas
are consistently deployed across partitions. This way, Kubernetes can
automatically handle a partition failure. Recent editions of Kubernetes
have implemented a kind of super-construct for replica sets called
deployments, each of which involves instantiating what’s called a
Deployment object. This object instructs a “deployment controller” to
manage replica sets automatically, refreshing them at regular intervals so
that they are as close as possible to the desired configuration that you
declare.

This way, your pods maybe rebalanced across the surviving zones in an
outage event, without an operator having to perform special actions. To
be more direct about it, you can specify the failure-domain for a node
as an explicit annotation, when you declare the node. You can tailor the
scheduler to your specific needs, and ensure that it will replicate across
nodes or across your specific infrastructure.

One of the ways that we have accomplished this in the past is through
nodeAffinity (formally nodeSelector, changed in Kubernetes 1.6),
which tells the scheduler exactly which nodes should be impacted when a
scheduled event occurs. This ensures that application-level availability
aligns with the infrastructure partitioning, thus removing or at least
reducing downtime should the infrastructure fail.

Networking
The Kubernetes network model hinges on one important fact: Every pod
gets its own IP address. This address is part of a network inside the
Kubernetes cluster that allows all pods to communicate with each other.
Because Kubernetes supports a modular implementation of software-
defined networking (SDN), you have several choices available to you.

http://www.thenewstack.io
http://blog.kubernetes.io/2017/03/advanced-scheduling-in-kubernetes.html

106Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

While it is indeed possible for you to implement a Kubernetes cluster
without the use of an overlay network, its absence can impose potentially
significant limitations and configurational overhead. In such a scenario,
the infrastructure would need to be aware of all the cluster IP addresses,
and be able to route to all of them. For an IaaS such as AWS, this can be
quite limiting.

An overlay network gives you an easier means for managing IP routing
inside Kubernetes clusters. This virtual construct separates the internal
cluster network from the infrastructure on which Kubernetes is running,
usually with some form of encapsulation. For simplicity, the most
commonly implemented network overlay is CoreOS’ Flannel. There are
others, such as Calico and Weave Net, which implement not only IP Address
Management (IPAM), but also network policies for controlling traffic.

Your selection of SDN has consequences for both cluster size and overall
performance, and may depend upon the infrastructure provider on which
the cluster is running. Each network overlay implementation has different
modules for different infrastructure types and cluster configurations. The
specific needs of each application will differ from one another, but here’s
the basics of what you need to know.

• Flannel is very flexible as it supports many different protocols and
networking models. Marshaled by CoreOS, Flannel is also the most
secure in our experience, and is the easiest to support distributed data
needs.

• Project Calico is the most well-performing of the three options. We
have consistently seen that Calico can outperform the others in raw
speed. But what you gain in performance, you lose in features, as
Calico doesn’t support as many security features, protocols or subnet
restrictions.

http://www.thenewstack.io
https://github.com/coreos/flannel
https://sweetcode.io/project-calico-fit/
https://www.weave.works/oss/net/
https://github.com/coreos/flannel
https://www.projectcalico.org/

107Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

• Canal is an open source hybrid option launched by the Project Calico
team, and now shepherded by Kubernetes migration platform
provider Tigera. It integrates the network policy management
functions of Calico with the network connectivity components of
Flannel.

• Weave Net is similar to Flannel with some small differences in critical
features. It supports NaCl (pronounced “salt”) for encryption, it has
better subnet restrictions, and supports partially connected networks
(e.g., crossing firewalls). Those gains come at a slight loss in a few
areas, as it tends to be less robust in distributed data needs or even in
supporting transport layer security (TLS).

Storage
Containers are best suited for 12-factor stateless applications, where
services respond to requests, then blink out of existence leaving nothing
behind. This is, as you can imagine, a very new — and for many
enterprises, foreign — way of presenting applications. And it simply cannot
translate to the storage-heavy models of existing applications whose life
cycles have yet to be fully amortized.

Kubernetes supports stateful and stateless applications simultaneously,
by adding support for persistent volumes — specifically, the
PersistentVolume subsystem — along with additional support for
dynamic provisioning. This allows support for legacy and other stateful
applications on Kubernetes clusters, thereby making Kubernetes an
attractive candidate for enterprises. The orchestrator offers support for
volumes that are attached to pods, as well as external persistent volumes.

A volume in Kubernetes is different from the volume concept in Docker.
While a Docker volume is attached to the container, a Kubernetes volume
is related to a pod. So even if a container inside the pod goes down, the

http://www.thenewstack.io
https://www.projectcalico.org/canal-tigera/
https://www.tigera.io/
https://github.com/weaveworks/weave
https://nacl.cr.yp.to/

108Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

volume stays on. However, a Kubernetes volume is still ephemeral,
meaning that it will be terminated when the pod is terminated. In
embracing Kubernetes, you have to keep these two equivalently-named
concepts distinct in your mind.

Kubernetes offers support for stateful applications by abstracting away
storage, and giving an API for users to consume and administrators to
manage storage. A volume is externalized in Kubernetes by means of the
PersistentVolume subsystem, and PersistentVolumeClaim is how
pods consume PersistentVolume resources in a seamless manner.
Specifically, it creates a kind of tie between the containers inside pods,
and a class of volume that will survive beyond the life cycles of those
pods.

Kubernetes offers logical file system mounting options for various storage
offerings from cloud vendors — for instance, Network File System (NFS),
GlusterFS, Ceph, Azure SMB and Quobytes. The Storage Special Interest
Group (SIG) is currently working on ways to make adding support for new
storage services and systems easier, by externalizing the plugin support.

You should make sure the storage needs of your existing applications are
supported before you begin the process of transitioning them into a
distributed systems environment like Kubernetes.

Security
Containerization changes the entire concept of security in the data center.
Orchestration changes it yet again. So it’s fair to say that you are probably
already contending with, and perhaps managing, your data center’s
transition to a new security model. The insertion of Kubernetes in this
picture affects what that model may be changing to.

Security topics pertaining to workloads running in the context of a
Kubernetes environment fall into three categories:

http://www.thenewstack.io

109Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

• Application level: session modeling, data encryption, throttling.

• Platform level: key management, data storage, access restrictions,
distributed denial of service (DDoS) protection.

• Environment security: Kubernetes Access, Node Access, Master
Node Configuration, encrypted key/value storage in etcd.

Node Access
Quite simply put, very few people should have direct access to a
Kubernetes node. Every time you grant such access to someone, you are
incurring risk. Instead of accessing the host directly, users can run
kubectl exec to get visibility into containers and their environments
without introducing a security vulnerability.

If you need fine-grained, container-level security, operators can fine-tune
access via Kubernetes’ authorization plugins. These plugins enable
restricting specific users’ access to certain APIs and preventing accidental
changes to system properties, such as scheduler options.

Namespaces
Kubernetes allows for applications to be installed in different namespaces.
This creates a lightweight boundary between applications, and helps to
appropriately compartmentalize application teams. Such a boundary
serves to prevent accidental deployment to the wrong pod or cluster, and
enables the establishment of firm resource constraints (quotas) on each
namespace. For example, you can give each app composed of
microservices its own namespace in production. This allows for a single
Kubernetes environment which hosts many applications, without the risk
of collision between the applications (via namespaces).

A namespace acts as a logical boundary for workloads — it limits the
breadth of an application to just that part of the system to which the same

http://www.thenewstack.io
https://kubernetes.io/docs/admin/authorization/

110Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

names apply. More technically speaking, namespaces represent multiple
virtual clusters backed by the same physical cluster. This makes
containerization possible in the first place.

Resource Quotas
A resource quota provides constraints that limit aggregate resource
consumption per namespace. Your enterprise IT team should create
multiple namespaces, each with its own quota policy. This way, each
policy may restrict the amounts of CPU, memory, and storage resources
that a workload may consume.

In addition, a resource quota can protect against a single pod scaling to
the point where it eats up all of your resources. Without a resource quota,
it would be pretty easy for a malicious source to denial-of-service (DoS)
attack the application. At the highest level, a resource quota may be set at
the pod, namespace or cluster level to monitor CPU, memory, storage
space or requests. Your specific needs will be determined by your
applications and available resources, though it is imperative that you
establish resource quotas.

Network Segmentation
Running different enterprise applications on the same Kubernetes cluster
creates a risk of one compromised application “attacking” a neighboring
application — not by hacking, but instead by passively interfering with the
flow of traffic in the network they share. Network segmentation ensures
that containers may communicate only with other containers explicitly
permitted by policy. By creating subnets with firewall rules, administrators
can achieve the right level of isolation for each workload running in a
Kubernetes cluster.

Segmenting networks ensures that no two systems can share resources or
call the wrong pods, which can be a very powerful way to secure

http://www.thenewstack.io
https://kubernetes.io/docs/concepts/policy/resource-quotas/

111Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

applications. But be careful: it’s very easy to fall victim to temptation and
overdo your segmentation policies, leading to an environment that’s not
only more difficult to manage, but produces a false sense of security
among the development team.

Secrets Management
Kubernetes has built-in storage capability for secrets — discrete values
that are typically pertinent to an application as it’s running, but should not
be shared with other applications, or with anyone else. When you define
something as a secret, it is stored independently from the pod, ensuring
that it is encrypted at rest. A pod is only granted access to secrets defined
in its pod definition file. On container startup, secrets are provided to the
container so they may be used appropriately.

Kubernetes provides a mechanism for making secrets available directly to
a container by way of an environment variable. Specifically, you define the
secretKeyRef variable in your pod definition file.

As a supplement to Kubernetes secrets, you may choose to use another
secret management tool, such as Vault. An application dedicated to key
management typically offers more robust features, such as key rotation.

Kenzan’s View: “At Kenzan, we’re very hesitant to use the secretKeyRef
approach, as it’s not too many steps removed from writing secrets directly
into a properties file whose name and location everyone knows. Arguably,
secrets between applications aren’t necessarily secrets between people,
or about people; but it’s never a good idea to offer directions and a map
to something intended not to be seen. Maybe there are use cases where
this makes sense, but we would advise using secretKeyRef with
caution.”

Access Management
With the exception of network segmentation, there is little security

http://www.thenewstack.io
https://kubernetes.io/docs/concepts/configuration/secret/

112Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

BUYER’S CHECKLIST TO KUBERNETES

between two pods. For many data centers this is a serious issue, because
a bad actor could end up accessing the cluster, or at the very least
triggering a networking error, and then all services would be exposed.

You may find it best to enact some level of internal security control to
validate that pod A can call pod B, assuming these interactions are
permitted by policy. Something like a JSON Web Token (JWT) claim (a
JSON-based assertion used to help validate authenticity) with a short-
lived, signed key rotation tends to work nicely here. This allows security
needs to be very granular for each specific endpoint by providing roles
within the JWT, and also ensures frequent JWT private key rotation (we
recommend every minute or two). Using this model, anyone who did
manage to penetrate through defenses and gain access to the network
would still be unable to place a call successfully without the signed JWT.
And a signed JWT is only valid for a minute or two.

In Conclusion
You’ve just seen a number of the key factors that pertain to the everyday
care and maintenance of Kubernetes, as well as the network with which it
is designed to interoperate. You and your organization would probably
rather not make a serious commitment to a deployment decision that
affects all aspects of application staging, monitoring and operations
without having had more than a glimpse of what to prepare for. The next
chapter will give you a preview of coming attractions, if you will: a
snapshot of the operation of the orchestrator in a real-world production
environment.

http://www.thenewstack.io

113Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM 113

How companies are viewing Kubernetes is starting
to change, as often happens when people start
using the platform. Brian Gracely of Red Hat
OpenShift maintains it is those initial applications

a company develops that are leading to an enterprise shift to adopt
Kubernetes on a larger scale.

Often, companies will start with a mobile app as the way to get
started. This application development process helps teams
understand what is necessary to really create a great experience for
the user. The cloud-native app serves as a way to integrate with
existing enterprise environments. Now the team is moving beyond
a single app to a more holistic view that changes the way a
company goes to market or even interacts with customers.

Learn more about what Gracely and the OpenShift team have
discovered about integrating the modern software development
mindset with the enterprise. Listen to the Podcast.

Brian Gracely is director of product strategy at Red Hat, focused on
OpenShift. He brings 20 years of experience in strategy, product
management and systems engineering. Brian co-hosts the award-

winning podcast, The Cloudcast, and the Kubernetes-focused podcast, PodCTL.

CLOUD-NATIVE APPS
LEAD TO ENTERPRISE
INTEGRATION

http://red.ht/2uJGuQo
https://soundcloud.com/thenewstackmakers/beyond-cloud-native-discovering-the-possibilities
https://soundcloud.com/thenewstackmakers/beyond-cloud-native-discovering-the-possibilities
http://www.thecloudcast.net/
https://twitter.com/PodCtl

114Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND
CHALLENGES WITH
USING KUBERNETES IN
PRODUCTION
by CRAIG MARTIN

I
n this chapter, we will address issues surrounding the deployment of a
Kubernetes environment in production. It’s a big deal. It takes a lot of
focused, deliberative consideration. There will be trial and error

involved, which means you will need to be prepared for the error part.
That’s where resilience comes into play. Luckily, container orchestration
was invented with resilience in mind.

To help guide you through the process of picturing Kubernetes at work in
your own organization in production (not just in development), we’ve
enlisted the help of Craig Martin, senior vice president of engineering at
software engineering services provider Kenzan. Martin and his team have
helped enterprises set up continuous delivery processes, often involving
Jenkins, and more often in recent years Kubernetes.

The Kenzan team will share with you the everyday facts of life and work
they urge their own clients to consider before embarking on a transitional
course that brings Kubernetes into their production environments. Here’s
some of what we’ll cover:

http://www.thenewstack.io
https://thenewstack.io/author/craig-martin/
http://kenzan.com/

115Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

• The tools and methods used for monitoring the Kubernetes platform
and the applications it runs at scale.

• The methodologies required for logging system events as they
happen.

• The tools and methods you need to put Kubernetes automation to
work.

• The resources that Kubernetes and applications need from each other.

Monitoring Kubernetes at Scale in
Production
The concept of monitoring a distributed systems environment is
completely different from monitoring a client/server network, for a reason
that becomes retroactively obvious once it’s discovered: The thing you are
monitoring whose performance, resilience, and security are important to
your organization, is bigger than any one processor that runs any
individual part of it. So monitoring a server, or watching a network
address, conveys far less relevant information for distributed systems and
microservices than it did before.

The challenge this fact creates is this: You need a monitoring strategy
before you choose the tool that can help your organization execute this
strategy. Kubernetes is not self-monitoring, nor does it include the tool
you need.

Monitoring Kubernetes requires solving many of the same challenges that
need to be solved with any highly scalable elastic application, though the
tooling or approaches may be different. All of the Kubernetes components
— container, pod, node and cluster — must be covered in the monitoring
operation. Equally important, processes must be in place to assimilate the

http://www.thenewstack.io

116Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

results of monitoring and take appropriate corrective measures in
response. This last item is often overlooked by DevOps teams.

Choosing a monitoring toolset is certainly important, but not for the
reason you might be thinking. Every monitoring toolset has its pros and
cons and, shall we say, unique qualities. You may find yourself choosing a
combination of toolsets, just as Kenzan has done internally, especially
when you need to monitor several facets simultaneously. The fact is, the
most important thing about a toolset is that you stick to the set you’ve
chosen, and use it consistently for your Kubernetes clusters.

We had to find that fact out for ourselves. Although there are many viable
options, here are the monitoring toolsets that are frequently used by
Kubernetes users, including those used by our team, and which we
recommend for your organization:

• Heapster: Installed as a pod inside of Kubernetes, it gathers data and
events from the containers and pods within the cluster.

• Prometheus: Open source Cloud Native Computing Foundation
(CNCF) project that offers powerful querying capabilities, visualization
and alerting.

• Grafana: Used in conjunction with Heapster for visualizing data within
your Kubernetes environment.

• InfluxDB: A highly-available database platform that stores the data
captured by all the Heapster pods.

Monitoring tools need to be just as durable, if not more durable than, your
application as a whole. Nothing is more frustrating than an outage that
causes your monitoring tools to go dark, leaving you without insight at the
time you need it most. While best practices for monitoring at this level
tend to be very specific to the application, you should look at the failure

http://www.thenewstack.io
https://github.com/kubernetes/heapster
https://github.com/prometheus
https://grafana.com/
https://www.influxdata.com/

117Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

points within your infrastructure and ensure that any outages that could
happen would not cause monitoring blind spots.

Most third-party and add-on applications that monitor Kubernetes (e.g.,
cAdvisor, Heapster) will be deployable inside your environment. Still,
make sure either that logging of those applications happens outside of
the cluster, or that they are set up with failover capability themselves. It’s
remarkable how frequently this simple but critical concept is
overlooked.

Monitoring Containers
Containers are the lowest-level entity within a Kubernetes ecosystem.
Monitoring at this level is necessary not only for the health of the
containerized application, but also to ensure scaling is happening
properly. Most metrics provided by Docker can be used for monitoring
Docker containers, and you can also leverage many traditional monitoring
tools (e.g., Datadog, Heapster). Kenzan tends to focus on the lowest-level
data to help determine the health of each individual container; for
instance:

1. CPU utilization: Rendered as an average per minute, hour or day.

2. Memory utilization: Rendered as an average of usage/limit per
minute, hour or day.

3. Network I/O: Determines any major latencies in the network, as
oftentimes the effects of traffic spikes may be amplified by network
latencies. Monitoring I/O may also expose opportunities for better
caching or circuit-breaking within the application.

These three categories will reveal whether containers are getting stressed,
where the latency is at the container level, and whether scaling is
happening when needed.

http://www.thenewstack.io
https://github.com/google/cadvisor
https://www.datadoghq.com/

118Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

NOTE: Linkerd is a service discovery proxy from the CNCF, which manages
the Kubernetes project. Utilizing Linkerd as your load balancer for network
traffic is a great way to implement such network management tricks as
load shedding, and also for handling performance problems on account
of retry spikes or a noisy neighbor.

Monitoring Pods
Pods are Kubernetes’ abstraction layer around the container. This is the
layer that Kubernetes will scale and heal for itself. Pods come in and out of
existence at regular intervals. The type of monitoring that you may find
most useful at the pod level involves the life cycle events for those pods.
The data you can harvest from such monitoring may be very useful in
understanding whether you are scaling properly, whether spikes are being
handled, and whether pods are failing over but correcting themselves.

Lots of data may be captured from Kubernetes; this list on GitHub will
provide you with complete descriptions. Here’s what Kenzan’s experience
tells its teams to focus on:

• Scale events take place when pods are created and come into
existence. These events give a higher-level view of how applications
are handling scale.

• Pod terminations are useful for knowing which pods were killed and
why. Sometimes terminations are on account of load fluctuations, and
other times Kubernetes may kill the pod if a simple health check fails.
Separating the two in your mind is critical.

• Container restarts are important for monitoring the health of the
container within the pod.

• Lengthy boot time intervals are common signals of an unhealthy
application. Containers should spin up and out of existence very quickly.

http://www.thenewstack.io
https://linkerd.io/
https://github.com/kubernetes/heapster/blob/master/docs/storage-schema.md

119Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

If you keep our monitoring somewhat simple and uncluttered, then it’s
much easier to manage. When you need to take a deeper, but ad hoc,
dive into the metrics, you can rely on custom dashboards from a service
like Grafana.

Monitoring Clusters
The processes involved with monitoring a production system are either
similar enough to one another, or morphing to become that way
progressively, particularly with respect to what data these processes are
looking for. But the rationales for monitoring these different components
will vary. At the cluster level, we tend to look at the application much more
holistically. We are still monitoring CPU, memory utilization, and network
I/O, but with respect to how the entire application is behaving.

Often we see a cluster fail when an application scales beyond its
provisioned memory and CPU allotments. An elastic application presents
a unique challenge: It will continue to scale until it can’t scale any more.
So the only real signal you get is an out-and-out failure, often at the
cluster level. For this unique reason, it’s very important to keep a close
watch on each cluster, looking out for the signals of cluster failure before
they happen.

We do a kind of time-series analysis in which we monitor four key variables:

1. Overall cluster CPU usage.

2. CPU usage per node.

3. Overall cluster memory.

4. Memory usage per node.

Although relatively rare, CPU usage per node can reveal one node severely
underperforming the others, while memory usage per node can uncover

http://www.thenewstack.io

120Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

routing problems or load sharing issues. Using time series analysis, you
should be able to plot these variables on an heuristic chart.

The New Stack has come across a container-based, distributed SQL
database cluster called CrateDB. It’s designed to leverage the principles of
distributed architecture for self-healing and instantaneous failover.
CrateDB’s architects say it’s easily manageable by Kubernetes, and
recently has been adapted to store machine data — the very class of data
that’s used in performance monitoring, including for the Kubernetes
clusters themselves, as well as their pods and their containers.

Monitoring the Network
As more and more applications are shifting towards elastic applications
with microservices, it’s easy to overlook the extents to which they depend
upon the network to be healthy and functioning. A highly elastic
microservice application on an underperforming network will never run
smoothly. No amount of defensive development or auto-healing will make
it run properly.

This is why we take network monitoring very seriously. Fortunately, tools
such as Heapster can capture metrics on the network and its
performance. While we typically find these metrics to be useful for
spotting the bottlenecks, they don’t go far enough in diagnosing the root
cause. This requires further digging with network specific applications.

We typically like to monitor a few items, and find it useful to separate
between transmitting and receiving:

• Bytes received over network shows the bytes over a designated
time frame. We generally look for spikes in this series.

• Bytes transmitted over network reveals the difference between
transmitted and received traffic, which can be very useful.

http://www.thenewstack.io
https://crate.io/

121Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

• Network received errors reveal the numbers of dropped packets or
errors the network is getting over a specified duration.

• Network transmitted errors tells us the quantity of errors
happening in transmission.

Your insight into the underpinnings of your Kubernetes environment will
only be as good as your metrics. Kenzan suggests you take findings
regularly, and develop an actionable plan to resolving the issues you
uncover. The action plan will need to be targeted to the application, the
Kubernetes environment, or the platform it is running on. Remarkably,
teams tend to forget the importance of this feedback loop.

NOTE: Currently in alpha, custom metrics is being added to Kubernetes’
autoscaling capabilities. This is a very exciting development as it will
allow for the most granular and customizable feedback loop into
autoscaling.

Automating Kubernetes at Scale
Kubernetes is not a management platform, nor should it be mistaken for
one. The whole point of orchestration is to reliably enable an automated
system to facilitate the deployment and management of applications at
scale, without the need for human intervention at each and every step. If
the tools you use with and for Kubernetes don’t enable automation, then
you’re not truly taking advantage of the benefits of orchestration.

Logging
Any Kubernetes production environment will rely heavily on logs. We
typically try to separate out platform logging from application logging.
This may be done via very different tooling and applications, or even by
filtering and tagging within the logs themselves. As with any distributed
system, logging provides the vital evidence for accurately tracing specific

http://www.thenewstack.io

122Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

calls, even if they are on different microservices, so that a root cause may
be identified.

Here are our suggestions for logging within a distributed Kubernetes
environment:

• Use a single, highly available log aggregator, and capture data from
across the entire environment in a single place.

• Create a single, common transaction ID across the entire end-to-end
call for each specific client. This will make it much easier to trace the
thread all the way to the ground.

• Ensure that service names and applications are being logged.

• Standardize the logging levels within the entire stack.

• Ensure that no data intended to be secure is being logged in the
clear.

Besides this high-level approach to logging, you should understand how
Kubernetes handles its own logging and events.

Kubernetes nodes run on a virtual Linux computing platform.
Components like kubelet and Docker runtime run natively on Linux,
logging onto its local file system. Linux logging is configured at different
folder locations including the ubiquitous /var/log. The first thing an
administrator should do is validate log rotations for these log files, as well
as all the other miscellaneous Linux logs. Kubernetes’ documentation
provides good recommendations for files to rotate. The logging
configuration should be inspected even if you intend to replace the local
logging mechanism with an alternative.

We don’t recommend that you keep logs for virtual compute instances
inside ephemeral cloud computing environments. Such instances can

http://www.thenewstack.io
https://kubernetes.io/docs/concepts/cluster-administration/logging/

123Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

disappear without notice. Modern logging and analytics tools provide
enough context and visual aids to help operators determine what actually
transpires inside large Kubernetes cluster deployments. You should use a
log aggregation service to ship your logs away from the Kubernetes
environment, for later review and analysis.

There are a few reliable methods for capturing Kubernetes-native Linux
logs, Kubernetes container-based component logs, and all application
container log data:

• Simply extend Kubernetes’ existing logging capability. As logs
accumulate and rotate on the nodes, you can ship them elsewhere.
One popular way to do that is with a logging container whose entire
purpose is to send logs to another system.

• Alternately, you can use the Fluentd data collector to transport logs to
an ELK stack (Elasticsearch, Logstash and Kibana), or to some other
log aggregation and analytics system. You could have a logging pod
with a Fluentd container on every node (Kubernetes makes this easy
with the concept of DaemonSets). This log shipping method makes
use of the command kubectl logs.

• There are variations on this approach where your application
containers have a logging container in the same pod, separating the
application from the system logging.

Whatever method you choose, the logs do end up residing on the node at
some point, and they do have to go someplace else.

Self-Healing
We believe it’s next to impossible for your system to achieve high uptime
rates without self-healing capability, especially with a distributed
environment. Kubernetes can regularly monitor the health of pods and

http://www.thenewstack.io
https://kubernetes.io/docs/concepts/cluster-administration/logging/
https://www.elastic.co/products?camp=Branded-GGL-Exact&src=adwords&mdm=cpc&trm=elk%20stack&gclid=CMHZutnQh9UCFcm6wAod0mYHrA
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

124Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

containers, and take immediate actions to resolve what issues it
encounters. Two of the object types that Kubernetes natively recognizes
are podstatus and containerstatus. These objects may have any of
several states:

• Pending: Kubernetes has accepted the pod, but has yet to create one
or more of the container images. This includes time before being
scheduled as well as time spent downloading images over the
network, which could take a while.

• Running: Kubernetes has bound the pod to a node, and has created
all of its containers. At least one of these containers is running, or is in
the process of starting or restarting.

• Succeeded: All containers in the pod have terminated successfully,
and will not be restarted.

• Failed: All containers in the pod have terminated, and at least one of
these containers has either exited with non-zero status, or was
otherwise terminated by the system.

• Unknown: For some reason, the state of the pod could not be
obtained, typically due to an error communicating with its host.

The kubelet agent that runs on each node is capable of obtaining more
detailed health checks, using any of these three different methods:

1. ExecAction: Runs a specific command within the container.

2. TCPSocketAction: Performs a simple transmission control protocol
(TCP) check on a specific container to ensure its existence.

3. HTTPGetAction: Performs a simple HTTP GET check on the container,
expecting to get a response of 200 (OK) or 400 (bad request).

http://www.thenewstack.io

125Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

A kubelet can also probe the containers within a pod for “liveness” (its
ability to respond) and “readiness” (its preparedness to handle requests).
You can configure a liveness check to meet your specific needs, as
demonstrated by the YAML file in Example 5.1:

apiVersion: v1

kind: Pod

metadata:

 labels:

 test: liveness

 name: liveness-http

spec:

 containers:

 - args:

 - /server

 image: gcr.io/google_containers/liveness

livenessProbe:

 httpGet:

 # when “host” is not defined, “PodIP” will be

used

 # host: my-host

 # when “scheme” is not defined, “HTTP” scheme

will be used. Only “HTTP” and “HTTPS” are allowed

 # scheme: HTTPS

 path: /healthz

 port: 8080

 httpHeaders:

 - name: X-Custom-Header

 value: Awesome

 initialDelaySeconds: 15

http://www.thenewstack.io

126Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

 timeoutSeconds: 1

 name: liveness

EXAMPLE 5.1: A configuration file for establishing a liveness check. [Courtesy Kuber-
netes.io]

With the data returned from a config file like this, Kubernetes has the
ability to create restartPolicies. These policies will tell Kubernetes
what to do in the event that any of the health checks fail. The system will
only restart at the pod level, so all containers within a pod will need to be
restarted.

The specifics of your self-healing configuration will be based on your
needs and those of the application. Fortunately, Kubernetes provides
quite a bit of flexibility and configurability data from many different
locations.

NOTE: While self-healing features such as rebooting every half-hour or so
is great to have, it can also mask a problem with your application. You
need monitoring and logging functions that are robust enough to bubble
up any issues that may occur.

Resilience
Depending on the needs of your application (e.g., 99.999% uptime)
resilience testing can and should be part of your platform. Failure at any
level of your application should be recoverable, so that no one
experiences any amount of downtime. In our experience, bulletproof
applications are only feasible if development teams know in advance their
work will be put through extensive resilience testing.

Although you can conduct a type of resilience testing through the simplest
of manual methods, such as manually shutting down databases or killing
pods at random, our experience has proven these methods are much
more effective when they’re automated. Although Netflix’s Chaos Monkey

http://www.thenewstack.io
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey

127Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

is a very powerful, tremendously useful, resilience testing tool that runs in
AWS, sadly it was not built for Kubernetes. Thankfully, there are emerging
resilience testing frameworks in the Kubernetes sphere, two of which are
fabric8 Chaos Monkey (part of the fabric8 integrated development
environment) and kube-monkey.

Routine Auditing
No matter how many checks and balances you put in place, your
Kubernetes production environment will benefit from routine
maintenance and auditing. These audits will cover topics that normal
monitoring will not cover. Traditionally, auditing is taken on as a manual
process, but the automated tooling in this space is quickly and
dramatically improving.

Typically, some of the issues we expect a good audit to turn up include:

• Container security vulnerabilities: One of the chief sources of
security holes in containers is vulnerable dependencies that are
included with them. Regular security patches should be made to the
containers; it is important to keep them up to date. But this doesn’t
have to be like patching a part of a virtual machine (VM). Instead, you’ll
find it easier to simply rebuild vulnerable container images with
updated, patched dependencies.

• Containers running in privileged mode: Although we’ve heard
some reasons why containers may need to run in privileged mode, we
try to avoid doing so, or only allow it for a very short period of time. A
routine audit of all pods running in privileged mode is a valuable
process to ensure against the building up of weak points due to
unchecked privilege.

• Containers without an owner: Allowing a container not to have an
owner in its native namespace is a potential security vulnerability.

http://www.thenewstack.io
http://fabric8.io/guide/chaosMonkey.html
https://github.com/asobti/kube-monkey

128Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

• Image size: Find any images that have grown too large, then rebuild
and replace them. The accrual of log files, adding state and then
writing to file systems, in-memory processing operations
accumulating over time, persistent states, and untidy caching
processes all lead to bulky and unmanageable container images.

• Single replicas: Any pod having only a single replica may be a sign of
a single point of failure.

• Unapproved container repositories: Allowing an image to be
downloaded from an unapproved registry is an engraved invitation to
vulnerability.

• Invalid ingress: For example, a “wildcard ingress” from a domain or
subdomain can render a pod vulnerable.

NOTE: Another way to protect against introducing a single point of failure
is to ensure your master node is replicated.

Scaling Clusters
For Kubernetes, scaling can mean any of three things: making each node
in a cluster larger (increasing its compute, memory and storage), adding
more nodes to a cluster, or adding more clusters. The good news is, the
vast majority of scaling is handled by the Kubernetes scheduler. It will not
schedule any pod if the resources for it are not available. This means the
environment won’t crash, though it also means users may experience
latency or downtime.

In a Kubernetes environment, a replication controller continually monitors
the desired state of a system (as determined by its configuration) and
makes changes to the system’s current state so that it more closely
matches the desired state. It’s the replication controller that defines the
number of pod replicas that should be running at any given time. That

http://www.thenewstack.io

129Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

number is essentially the base level for each pod. Allowing Kubernetes to
manage pod instances through a replication controller is one way of
ensuring that all pods are running and healthy.

Horizontal Pod Autoscaling is a tool Kubernetes uses to automatically
scale the number of pods in a replication controller, based on CPU
utilization. The ability to scale using application-supplied metrics was in
alpha at the time of this writing. With horizontal autoscaling, when
resources are getting over-utilized, Kubernetes will pick up on the spike
and throw more pods at the load. Generally, Kubernetes adds enough
pods to handle the spike.

Scaling at the Infrastructure as a Service (IaaS) or data center level
typically involves allocating more instances and more memory to the
environment, and creating more nodes. As soon as the nodes are
available, the scheduler will begin to schedule pods to that node.

Resource Quotas
A resource quota lets you limit a namespace within your Kubernetes
platform, ensuring that one application will not consume all the resources
and impact other applications, as demonstrated by the command-line
interaction in Example 5.2.

$ kubectl describe quota compute-resources

--namespace=quota-example

Name: compute-resources

Namespace: quota-example

Resource Used Hard

-------- ---- ----

limits.cpu 0 2

limits.memory 0 2Gi

pods 0 4

http://www.thenewstack.io
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

130Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

requests.cpu 0 1

requests.memory 0 1Gi

EXAMPLE 5.2: A sample resource quota, returned by the kubectl describe quota com-
mand.

Setting resource quotas can be a bit challenging. In our experience, we’ve
found breaking down the namespaces by their expected load and using a
ratio to calculate percentage for the cluster is the most diplomatic way to
begin. From there, use monitoring and auditing to determine if your
partitioning is correct.

For example, suppose you have a cluster with 16 GB of RAM, eight virtual
CPUs (vCPUs), and three namespaces. You would need to set at least 15
percent of main memory (about 3 GB) for system daemons such as kernel
and kubelet, and allocate a load breakdown with the remaining 13 GB. You
could then break down the load percentage into rough quarters, with
Namespace A given 50 percent of the load and four vCPUs, and
Namespaces B and C each getting 25 percent of the load and two vCPUs.

Container Resource Constraints
Figuring out how much resources an individual container or pod will
require has become something of an art. Historically, developer teams
have made their estimates way more powerful than they need to be. We
try to perform some level of load testing to see how it fails over, and

Typical Cluster Allocation Breakdown
Namespace Load Percentage vCPU Memory

Namespace A 50% 4 8 GB

Namespace B 25% 2 3 GB

Namespace C 25% 2 2 GB

TABLE 5.1: Determining scalable resource allocation for load, vCPUs, and memory in
clusters of containers.

http://www.thenewstack.io

131Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

then allocate resources appropriately. Netflix coined this method
“squeeze testing.”

Through a YAML configuration file, a Kubernetes operator presents the
orchestrator with “bids” for available resources, although that’s not the
official name for it. Example 5.3 shows a sample config for a container
compute resource, borrowed from Kubernetes’ own open source
examples. This configuration defines the pod as having two separate
containers, mysql and wordpress. Both the containers in this pod make
declarations requesting essentially 64 mebibytes (MiB) — essentially
megabytes, but in powers of two rather than ten — and 250 millicores (m)
for one-quarter of a vCPU. These requests are for general requirements,
though it’s conceivable that the orchestrator could exceed those requests.
So, as this example shows, both containers in the pod set limits of 128 MiB
and 500 millicores (half a vCPU).

apiVersion: v1

kind: Pod

metadata:

 name: frontend

spec:

 containers:

 - name: db

 image: mysql

 resources:

 requests:

 memory: “64Mi”

 cpu: “250m”

 limits:

 memory: “128Mi”

http://www.thenewstack.io
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://pc.net/glossary/definition/mebibyte

132Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

 cpu: “500m”

 - name: wp

 image: wordpress

 resources:

 requests:

 memory: “64Mi”

 cpu: “250m”

 limits:

 memory: “128Mi”

 cpu: “500m”

EXAMPLE 5.3: A sample configuration for a pod that accounts for both MySQL and
WordPress.

Setting up the proper memory for applications has become both an art
and a science. A proper allocation should take account of the sizing needs
of applications. We typically factor in a couple things:

• Application volatility: If you are expecting large fluctuations in the
number of users or in the overall application demand, then having
more space to expand is a good thing.

• High availability requirements: If you truly need high availability
and are spreading workloads across two locations (e.g., AWS regions),
then should one location go down, you want to ensure that the single
remaining location can handle the full load.

Typically, we shoot for the 60/40 rule. We traditionally will allow 60 percent
of resources to be allocated at any given time, leaving 40 percent of free
space for growth. With monitoring, we can watch for resource
consumption spiking too close to the upper limit, and add more nodes to
compensate if it does.

http://www.thenewstack.io

133Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

Facilitating Kubernetes and Applications
There are two schools of thought with respect to the relationship between
the containerized application and the container orchestration system.
One is that the developer should be enabled to take a completely agnostic
attitude toward the platform or platforms on which the application will be
deployed. This is one of the hallmarks of serverless architecture —
abstracting away the details of configuration and deployment from the
developer — which Kubernetes certainly supports.

On the opposite side of the aisle comes this argument: The best way for
developers to build applications for the platforms their organizations will
use is to enable those applications to detect their own configurations by
means of APIs, and adapt themselves dynamically to the performance
requirements of whatever infrastructure happens to be running them at
the time. Kubernetes also supports this school of thought.

This is one of those areas where Kubernetes’ contributing engineers
declare their platform unopinionated. But this is not to say that the
orchestrator has, or should have, no direct relationship with the
applications or workloads contained in its pods, whichever methodology
your organization may choose to adopt.

Mutual Requirements
A healthy Kubernetes environment will have a steady, bi-directional flow
of information from the platform into the application, and from the
application back into the platform. This means these two components
really do need to look out for one another. Despite the layers of
architectural abstractions separating the application from its host, now
that easily distributed applications have become reality, applications
created during the era of distributed architecture need to be aware of
distributed platforms.

http://www.thenewstack.io

134Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

Conversely, platforms such as Kubernetes should never treat
applications as amorphous entities that all fall within strict quotas for
resources and connectivity. You might think this is one of those
assertions that goes without saying, but you’d be surprised how little
bi-directional communication takes place today between the two
disciplines.

• Availability: Not every application needs 99.999 percent availability,
but some definitely do. There are costs and challenges associated with
the level of availability that is required. Your application staging
platform should factor in the needs of each application. If a high level
of availability is required, it should ensure that all resources made
available to the application are redundant — including data, load
balancing and service discovery.

• Scalability: It’s far too late in the process if you’re just beginning to
assess the scalability needs of your application right before it heads to
production. Your development team may never have considered it, so
quite possibly the application can’t even handle it. Taking account of
scalability needs will enable you to set a baseline for services, and a
threshold for each individual pod. These metrics will prove crucial for
monitoring memory and CPU usage.

• Container image sizing: Container images come in many different
sizes. The services included in those containers may have very
different needs. Knowing exactly how the services will be used and
where they will start to churn (for instance, memory, CPU, network)
should make it easier for you to size the container properly, and get the
most out of the base sizing.

A healthy Kubernetes installation will definitely establish a baseline of
patterns and anti-patterns to which your applications should adhere. This

http://www.thenewstack.io

135Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

will create consistency, and ensure that monitoring focuses on the right
metrics when optimizing the application. We typically come across a few
key points where the platform impacts the design of applications.

• Bootstrapping requirements: Very poorly written pods will not
start up very quickly. Slow startups should never be allowed in a
Kubernetes production environment. Given the platform’s elastic
nature and continuous monitoring, slow applications can dramatically
impact its health. We typically don’t permit applications to require
more than 20 seconds for startup. This rule forces developers to
maintain lightweight services, and make sure dependencies are kept
to a minimum.

• On-pod needs vs. off-pod needs: With Kubernetes, you may find it
very convenient to embed smaller containers (called supporting
containers) into the same pod as the application. These tend to be
very small and lightweight, and handle a lot of the platform-related
code such as logging, secrets and configuration.

• Ephemeral caching: Every well-performing application will have
some level of caching. You’ll want to standardize how that cache is
managed, so that the platform can support distributing the cache if it
needs to, as well as monitoring any persistence layers the application
may require when a pod is terminated.

• Application logging: We’ve used many different log platforms — for
instance, ELK stack, Splunk, Graylog, Datadog — and you can be
successful with all of them. It should be the responsibility of your
platform team to dictate how logging should occur, and to set your
developers’ expectations for capturing application-level metrics and
events, such as HTTP errors, stack errors, resource usage levels and
transaction IDs.

http://www.thenewstack.io
https://www.elastic.co/products
https://www.splunk.com/
https://www.graylog.org/
https://www.datadoghq.com/

136Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

Configuration Management
Every application’s configuration is a principal driver of its behavior. With
Kubernetes, all applications and pods should be handling configuration
consistently. Otherwise, achieving rapid deployments will be very difficult,
and ensuring accuracy of configuration will be cumbersome.

A common approach that we see in managing config is to use an
“externalized configuration” service. There are existing microservices
patterns and solutions that allow for externalized configuration, such as
Spring Cloud Config, in addition to simple key-value stores. Such a
configuration service is typically its own pod with a data store backing it,
typically off-pod.

Kubernetes provides other ways of managing configuration that are
inherent to the platform. The two most commonly used methods are:

• Environment variables for specific container-level parameters.
These are set directly in the container, and are specified in the
pod-level YAML configurations.

• Config maps are similar to environment variables as they are
container-level, but have more complex data structures such as
key-value pairs.

There really is no correct way to handle configuration other than to have
consistency. We typically use environment variables and config maps to
manage the platform-level configuration, and the externalized
configuration service to manage application-level config.

So it is imperative that your application developers are taking direct
feedback from the needs of the platform, and that your platform
immediately benefits from the changes they make. This is really the only
way you’ll have applications that are robust enough to grow and evolve

http://www.thenewstack.io
https://cloud.spring.io/spring-cloud-config/

137Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

within a Kubernetes environment. Don’t get too stuck in the right way, but
do have a consistent way.

Enabling Statefulness
Introduced into beta for Kubernetes version 1.7 (and thus perhaps not
ready for prime time everywhere), a stateful set (referenced using the
StatefulSet object) can provide ordered, stable, graceful and generally
nice storage, network configuration and deployments — essentially
kinder, gentler pod management. This is important for applications that
need their services started and stopped in a predictable manner.

For example, an application stack may prefer to have data generating and
mutation services stopped first on shutdown and started last on start-up.
Replicated stateful sets leverage this order guarantee to allow for
supporting data sharing scenarios, such as master data repository
containers with read replica containers. This enables a complete stateful,
data persistent application to reside wholly within the context of
Kubernetes.

NOTE: An organization should practice and simulate start-up, shutdown
and failure scenarios before using these features in production. This is for
Kubernetes operational confidence, but also for the applications.
Replicated StatefulSets should be considered an advanced capability.

But before you consider implementing everything that your application
needs to remain stateful in a Kubernetes stateful set, you should make a
complete cost-of-ownership evaluation, taking into account the resources
available to you through a public IaaS. Essentially, stateful sets are really
powerful tools, but should be utilized carefully and judiciously.

For instance, you may use a stateful set for an relational database
management system (RDBMS), but your IaaS offers a fully-managed
RDBMS solution — one that might even be able to handle, or at least can

http://www.thenewstack.io

138Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

geographically replicate, the global data consistency problem. To that
end, some public IaaS platforms even offer a RDBMS proxy container, or
perhaps the relational database service vendor may offer one. This is a
useful way to fully isolate and maintain the datastore dependencies
outside of your application code, thus reducing your dependency on
stateful sets.

Coordinating the Deployment
Organizations typically separate software development teams from
systems operations teams, so that responsibility for active code shifts.
Because of this, it becomes incumbent upon the software platform itself
to enforce standards for the code it supports. No code should be
deployed in Kubernetes without meeting minimum requirements.

This means someone should set those minimum requirements for
deployments. Here are some recommendations:

Small Footprint and Bootstrap Times
No pod should consume too many resources. This is a sign of either a
poor solution architecture (e.g., too monolithic), or poorly written code.
We recommend you limit your memory maximum to 2 GB, and bootstrap
time to under 10 seconds.

You could have great custom, distributed application code, but if your
data team decides to bake the database directly into the pod, the greatest
code in the world won’t save you from slow startup times.

Adequate Automated Test Coverage
The meaning of adequate may be a bit subjective, and may vary in
accordance with the requirements of the workloads you run. Perhaps not
all of your tests can, or should, be automated. But it’s critically important
that automated testing play some role in your deployment pipeline.
Specifically, your pipeline should be capable of running a full and exclusive

http://www.thenewstack.io

139Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

suite of tests for each pod deployed, as soon as possible. Each test should
be capable of failing the deployment if its requirements are not met. We
rely heavily upon these types of tests:

• Unit tests should run in the build process and are applicable to the
smallest chunks of code. Here, you don’t test all the code. You wouldn’t
even test most of the code. You would test only the impacted code.
Implementing unit tests starts with running them as part of the build
process. Later, you extend them to integration tests for all
dependencies and consumers, functional testing to regression test
dependencies, and finally lightweight, targeted end-to-end (E2E) tests.
This allows for higher confidence in smaller releases.

• Integration tests pertain to the testing of all the functions and
modules, ensuring that they are working as expected. This is
probably the most misunderstood type of testing in our experience,
especially in microservices environments. For us, integration testing
is about integrating functions and modules. It is not about
integrating microservices — that comes from functional testing.
Contract testing (e.g., Pact) is a really powerful style of integration
testing, as it allows for very targeted tests directly to the code
modules being deployed.

• Functional tests ensure that all the dependent components (through
the soon-to-be-deployed pod) are functioning as expected. This is
done by testing the inputs and asserting on the outputs. This is the
first time that testing can happen with all the upstream dependencies
and — at least theoretically — the downstream dependencies in place.

• End-to-end tests mimic how a user will interact with the workload in
a production deployment. These tests tend to have the lightest weight,
and are smoke tests as much as anything else.

http://www.thenewstack.io
https://docs.pact.io/

140Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ISSUES AND CHALLENGES WITH USING KUBERNETES IN PRODUCTION

Automated Deploys
Manual deployments are generally dangerous, and rarely yield consistent
results. Kenzan typically deploys workloads using automated platforms
such as Spinnaker and Jenkins. Through a technique called a canary
release, a workload slowly rolls out into production over several hours’
time, with its error rates continually monitored. If error rates are
consistently high, this process can trigger an automated rollback. You
should avoid building any system that requires manual intervention to
roll back.

Conclusion
Choosing Kubernetes as your container orchestration solution solves
many of the container management problems with which organizations
are faced today. This chapter highlighted the many deployment and
operational concerns organizations face when operating Kubernetes in
production. It then addressed how using Kubernetes enables microservice
application architectures. For containerized, cloud-native apps,
Kubernetes provides almost Platform as a Service (PaaS)-like capabilities
beyond just container management, coupled with great operational
resilience.

http://www.thenewstack.io
https://www.spinnaker.io/
https://jenkins.io/

141Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM 141

MAINTAINING THE
KUBERNETES LIFE CYCLE

Kubernetes now faces an evolutionary hurdle that
only Docker before it has faced so soon in its life
cycle: the problem of multiple concurrent
versions. Version 1.7 is upon us today, even though

other versions are still in active use. At the rate Kubernetes is
evolving, over a dozen viable versions could be deployed over the
standard life cycle of organizations’ IT projects — some three to
four years’ time.

“We try to make every new Kubernetes release as stable as
possible,” said Caleb Miles, who leads the Kubernetes Project
Management SIG. “We have a long code freeze and stabilization
period to shake out any of the rough edges before a new version of
Kubernetes lands.”

In this podcast, learn more about how the Project Management SIG
maintains consistency and concurrency without introducing
obsolescence. Listen to the Podcast.

Caleb Miles technical program manager at CoreOS, is helping to
support the Kubernetes open source community through a focus on
contributor experience, the release process, and project

management. Prior to CoreOS, Caleb worked on Cloud Foundry at Pivotal
Software, where he focused on maintaining and improving infrastructure
support for the Cloud Foundry platform. Previously, Caleb contributed to the
Ceph distributed storage system, working on the S3 compatible object storage
interface.

http://bit.ly/2uJMGYG
https://soundcloud.com/thenewstackmakers/maintaining-kubernetes-life-cycle
https://soundcloud.com/thenewstackmakers/maintaining-kubernetes-life-cycle

142Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE
FUTURE OF
KUBERNETES
by SCOTT M. FULTON III

W
e’ve been asking the same questions about our computing
platforms ever since we began excavating the basement
floors of our headquarters buildings, making room for the

likes of IBM, RCA, Sperry and DEC: What happens when these machines
reach the end of their life cycles? Where do their programs go after that
time? And will the new machines that replace the old ones run the old
programs the same way?

We didn’t call it infrastructure at the beginning, even though it shared the
basement with the furnaces and the laundry. Sometime during the 1980s,
academics who joined the British Government began using that term to
describe information technology as a general commodity. The notion
emerged so gradually into the mainstream conscience that not even
historians can pin down the exact date when the metaphor was first
uttered in public.

Over time, their metaphor congealed into a kind of lexical platform. The
Information Technology Infrastructure Library (ITIL) codified in
documents, perhaps for the first time, the primordial ideas upon which

http://www.thenewstack.io
https://thenewstack.io/author/scott/

143Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

the subject of this book is based: the delivery of technology as services,
the management of processes as pipelines, the institution of continuous
improvement methods.

Delivering Infrastructure as a Service (IaaS) was not some radical
discovery that somebody introduced to the world in a TED Talk, and the
world embraced like a viral cat GIF. IaaS was something we were already
doing, and the revolution was done before we realized it.

“I think orchestration tools are really fascinating and super-awesome,”
said Laura Frank, director of engineering for continuous integration
platform maker Codeship. “And because they are fascinating and super-
awesome, and the cool new thing, engineers — as maybe a character flaw
of our profession — really gravitate toward making things complicated. We
want to check out all the new cool things and find an excuse to use it.

“I think a lot of times, engineering teams choose to use a tool that might
be more complex for their actual needs,” Frank continued, “and they try to
solve problems that they don’t quite have yet. I don’t think that’s
necessarily specific to engineers; I think lots of people tend to do that.
Maybe it’s just a little more pronounced with engineers.”

Thanks to the dreams and intentions of engineers, however complex they
may be, in nearly seven decades’ time, computing has become the cloud
beneath us. We only think we use supercomputers in our pockets, but the
truth is that the real work is being done in cloud data centers. They may
still be our basement floors, or they may be leased space from Equinix or
Digital Realty, or they may be virtual constructs supported by AWS
US-West-1 or -2. But they are the true seats of power in our world. Our
smartphones and tablets are just putting on a good show for us, but Siri
and Spotify and Slack and Salesforce have made their homes in the places
their predecessors left for them.

http://www.thenewstack.io
https://www.linkedin.com/in/laurafrank/?ppe=1

144Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

“ If we’re going to survive as a
project … we have to allow for
flexibility and heterogeneity and
openness … in order for us to not
become stuck in what we have done
before.”
-Brendan Burns, Microsoft.

So little has actually changed.

The questions we ask about the new computing platforms (new for us, or
so it seems) in which we make our investments are no less pertinent today
for virtual platforms, such as vSphere, Mesosphere, OpenStack and
Kubernetes, than to the physical platforms of the 1950s — the RCA 501,
the IBM 701 — or the back-office power centers of the 1980s — the IBM
AS/400, the DEC VAX-11. The platform life cycle is the critical subject every
institution asks of the analysts it hires to investigate a potential new
platform. How far into the future, businesses have always asked, will this
platform take us?

What actually has changed — both suddenly and radically — is the context
of our answers. The explanations for how and why things in computing
infrastructure work today are so different than they were just three years
ago, let alone the past seven decades of the computing industry, that at
first glance they may as well have come from an alien planet.

Who Makes Kubernetes, Really?
“Tools should be selected in order to deliver value to the operator of the

http://www.thenewstack.io
https://www.linkedin.com/in/brendan-burns-487aa590/

145Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

tools,” said CoreOS’ Caleb Miles. “You see some organizations find that
Kubernetes by itself delivers important value to their organization and to
their operations. We see that other organizations combine upstream
Kubernetes with a variety of other tools and projects to deliver value to
their organizations.

“I believe that the CNCF serves an important function,” Miles continued,
“as a clearinghouse for helping organizations on their cloud-native
journeys — to figure out what tools can be used to solve their challenges.
[In] improving developer productivity, increasing developer velocity,
improving transparency into operations — I think the CNCF can be a real
partner to help organizations and users make that journey.”

Kubernetes, described Google’s Tim Hockin, “is over a million lines of code
that spans dozens of repos, that has hundreds of active developers on it
every week.” He is a principal software engineer at Google, and Kubernetes’
co-founder. “There’s simply no way that one person can read even the
subject of every pull request and every bug that comes through, much less
spend time actually analyzing and participating in all of those issues.”

Hockin is known for his contributions to Borg, the internal container
orchestration system at Google that revolutionized its approach to
deploying applications, and that became the first prototype for
Kubernetes. Combined with his contributions to Docker, he became a
recognizable influence in popularizing distributed containerization.
However, it’s not a perception that Hockin would readily accept, citing the
complexity of the system that has emerged around containerization, and
the existence of many other influencers the development community.

“I think it’s fair to call it a ‘Kubernetes galaxy,’” said Aparna Sinha, Google’s
group product manager for Kubernetes, “because it is a very large project.
By many measures, it’s one of the largest projects on GitHub.”

http://www.thenewstack.io
http://www.hockin.org/~thockin/
https://twitter.com/apbhatnagar?lang=en

146Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

Kubernetes is an open source project of the Cloud Native Computing
Foundation (CNCF), which is itself part of The Linux Foundation. By design,
the CNCF’s leadership is not led or maintained by any one company. While
Google engineers played a major role in the group’s formation, Microsoft
joined the CNCF in June 2017 and became a platinum-level member in
July. Cisco, Dell Technologies, Huawei, IBM, Intel, Red Hat, CoreOS and
Samsung are also members at the highest, platinum level.

“For new contributors, it’s a little bit overwhelming at first to look at the
list of SIGs [Special Interest Groups] — there are twenty-plus SIGs — and
try to figure out, ‘I have a problem, I have a question, where does it
belong?’” admitted Hockin. “But I think we’ve done a reasonable job at
offering guidance on that. And as the governance structure formalizes,
each of these SIGs will have a more formal charter, which details in a little
bit more depth what the SIG is responsible for, where its boundaries are,
and what touchpoints it has with other SIGs.”

Where is the Center of Power?
Ostensibly, this SIG-based structure intentionally guards against any one
vendor’s control over the entire project. However, many folks in today’s IT
leadership — veterans of decades of Windows patches and years of
golden master virtual machines — are understandably skeptical about
whether this “development community” is really a nicer-sounding moniker
for a “development committee.”

But the CNCF is not a United Nations, or a board of trustees, for these
member companies. Instead, the organization seeks to identify the
interests of the users of Kubernetes, and of the other projects it manages
that are compatible with Kubernetes. Granted, those users are typically
customers, or potential ones. Yet identifying users first and foremost
enables the CNCF to drive a development strategy for the platform whose

http://www.thenewstack.io

147Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

objective is to respond to the needs of those identified customers, if not
anticipate what those needs might be in the future.

That’s a very different strategy than one whose principal motivation is
softening the targeted market to be more receptive to whatever shape,
form or function the platform happens to take at the time. How often
have we seen that before?

“Not everyone is ready to deploy
12-factor, cloud-native applications
today. We try to make the new
version of Kubernetes worth it for
people to adopt.”
-Caleb Miles, CoreOS.

SIGs, explained Sinha, “are working groups composed of engineers and
cross-functional individuals from many different companies, as well as
independent individuals, who have come together around a topic of
interest. Each SIG develops a roadmap for that SIG for the year. And I think
that’s part of the reason why it can sometimes be hard to see the themes
that are emerging at the project-wide level.”

The roadmap for each SIG serves as a combination of an itinerary and a
constitution. It explains its function to the world by presenting itself in
terms of what it plans to accomplish.

“So you can consider each of those SIGs as its own planet or solar
system,” said Sinha.

Google’s Tim Hockin refrains from accepting any sort of central

http://www.thenewstack.io
https://www.linkedin.com/in/calebamiles/

148Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

authoritative role in the project, telling us he’s quite comfortable with
allowing responsibility for certain issues — around which individual SIGs
are formed — to be delegated to others. “I don’t need to be involved in
every issue at this point,” said Hockin. “The team of developers here at
Google and across the world are very well trusted, and I believe they’re
doing the right things even if I’m not paying attention.

“The size of this project requires that I choose the things that I pay
attention to,” he continued, “which is just different for me because I like
to be involved in everything, and I like to understand how things are
evolving, and what decisions people are making and why. Necessarily, as
a project grows up, that just can’t be true anymore.”

“We can talk about tools, and we can talk about frameworks, and delivery
pipelines all day long. But really, when it comes to high-performing
engineering organizations,” said Codeship’s Laura Frank, “I think what
everything comes back to, is developer economy. Giving engineers more
ownership, or a feeling of ownership, over the code that they’re writing
and shipping is paramount. It’s critical, when you want to talk about
developer happiness, productivity, investment in the code, making sure
it’s the best it can be.

“For a long time, when people were very intimidated by the complexity of
Kubernetes,” Frank continued, “I always encouraged them to think about
where Kubernetes came from, why it exists and what kinds of problems it
was trying to solve. And I often said Kubernetes is great if you have
Google-sized problems, or Netflix-sized problems, or any other kinds of
large application that has huge scaling problems. It’s likely that you want
to think you have that size of problem, but maybe you don’t. It’s always
better to start a little bit smaller and work your way up.”

http://www.thenewstack.io

149Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

Interchangeable Parts
It is a perplexing thing: an organization whose natural leaders — or, more
fairly, the people most likely to be nominated as such — may not have the
personal bandwidth to assume a central leadership role. To understand
how such an entity can possibly function, you have to do perhaps the
most unnatural thing an analyst of a computing platform for an
enterprise might expect to do: decompose each element of the platform
into self-contained components that either may interact with one
another, or be replaced by other components that may interact better.
Kubernetes has become a platform of interchangeable building blocks,
whose ultimate structure is itself a building block of a system on a
different level: the growing list of CNCF hosted projects, which some
would say resembles a stack.

“We’ve already started breaking up the monolithic kubernetes/kubernetes
repo,” Hockin explained further, referring to the GitHub location for the
central repository. “We’ve been injecting stand-alone things into their own
repositories; we’ve got some new rules around what goes into the main
Kubernetes repo and what doesn’t; we’ve set up, through some
architecture diagrams and documentation, a layering structure of what’s
part of the core and what’s part of the ecosystem. And that helps guide
decisions about, how do we modularize and delegate.”

The orchestrator was supposed to have been a system of interchangeable
building blocks. And so is the full set of CNCF projects, at another level.
But the instinct to coalesce ideas into a single, rational construct can be
so great that, at times, the architects of Kubernetes do seem to be
counteracting the pull of gravity.

“Kubernetes, from the beginning,” Hockin continued, “was many
components working together. So it’s not like it’s a necessarily monolithic

http://www.thenewstack.io
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes

150Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

behemoth. We already have five or six main components that are really
conceptually different, while having some amount of overlap — and
there’s some value to developing and testing them together. And they
have different teams of people working on them that are reflected in our
SIG structure.”

Hockin said he hates silos. Many people who live and work in
organizations that continue to compartmentalize their work processes say
they hate silos. There’s a complete division of labor which, it would appear
from Hockin’s explanations, he would rather the SIGs avoid. But some
division is necessary, he believes, in order for developers and contributors
to be able, during some portion of their days, to focus on achievable tasks
at hand. His metaphor for this kind of division is “soft fencing.”

Keep in mind, some of Kubernetes’ contributors are not engineers with a
major vendor, service provider, or telco, but developers employed by firms
to build their web sites and get their IT assets ported to that big cloud
where all the big data lives. Some of the most important work done on
this platform is contributed by volunteers.

“A number of security vendors with
a networking focus got together and
said, ‘Look, we need to fix this, but
we need to do it in an interoperable
way.’”
-Gabe Monroy, Microsoft.

So the Kubernetes project governance structure, stated Hockin, codifies
the functions that each group performs as a group, rather than stipulating

http://www.thenewstack.io
https://twitter.com/gabrtv?lang=en

151Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

the job function of each individual member. SIGs have responsibilities and
ownership, and they do have technical leads. Only now is the process of
determining who those leads should be becoming formalized.

“The structure is really for the benefit of developers and project
maintainers,” said Hockin, “so that we can understand where bugs go,
and where changes impact, and who needs to coordinate with whom. I
wouldn’t expect an end user — somebody who doesn’t get involved with
the community — to rationalize the structure here. That’s why we have
the main kubernetes/kubernetes repo — the central starting point for
anybody who wants to file a bug, ask a question or comprehend
something.”

End user contributions like these, he went on, get directed to the
appropriate SIGs and mailing lists — and it’s through this form of
disseminative interaction that the Kubernetes contributors know what
their users, implementers and customers expect of them.

Unlike the case with an operating system or a web browser, an
infrastructure platform deployed in a data center can’t just upgrade
itself automatically with absolutely assured safety — not without
jeopardizing the stability of the services that are staged on that platform.
So the new release of Kubernetes cannot immediately render the old
releases obsolete — or, as an operating system vendor would have it,
automatically vulnerable.

Caleb Miles, a technical program manager with CoreOS, is one of the leads
for the Kubernetes Project Management SIG, and also a key member of an
emerging group called kubernetes/sig-release. Miles’ function with the
project would seem unusual in another era: He’s helping to ensure the
stability of emerging and upcoming releases of the platform (at the time of
this writing, Kubernetes was on version 1.7.3) while actually maintaining

http://www.thenewstack.io
https://github.com/kubernetes/sig-release

152Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

the integrity of previous releases going forward.

“We have a long code freeze and stabilization period that we try to use to
shake out any of the rough edges before a new version of Kubernetes
lands,” said Miles. “But we also want to make each release important
enough for companies, users of Kubernetes, and the open source
community, to want to adopt the new version. Whether that’s migrating
important API endpoints and resources from alpha to beta to GA (general
availability), or addressing critical gaps in the project that make it difficult
to deploy the workloads that the users are trying to adopt today … Not
everyone is ready to deploy 12-factor, cloud-native applications today. We
try to make the new version of Kubernetes worth it for people to adopt.”

Which Transition Takes Precedent?
The challenge with achieving this goal is that the needs and requirements
of businesses are actually changing more rapidly than technology. Many
know their systems are not keeping up with demands. If anyone needs to
make a change, business leaders believe, it’s the IT department.

“What we’re seeing from customers is that the IT conversation has shifted,”
explained Brian Gracely, Red Hat’s director of product strategy for
OpenShift (its commercial Kubernetes platform). “People [used to] say,
‘Look, I need something to perform faster, or I need it to be cheaper.’ It
was either cost-driven or CPU-driven. And with the conversations we’re
having these days, the technologists in the room — whether they’re part
of IT or a line of business — are saying, ‘Here’s how our business is
changing. Here’s how some part of our typical go-to-market, or our supply
chain, or our customer interaction is significantly changing … I’m not
going to be able to keep doing what I’ve done for the last ten years the
same way.’”

It’s not so much that the supply chain is evolving or even mutating, Gracely

http://www.thenewstack.io
https://www.linkedin.com/in/briangracely/

153Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

believes. It has actually already transformed, as though someone in the
control room flipped the switch after all but forgot to send an email to IT.

“Instead of everything running in one monolithic application for your
supply chain,” said Gracely, “the things that make up the service you
deliver come from a bunch of different pieces and parts. And that supply
chain is APIs [application programming interfaces].”

From a software developer’s perspective, an API is an endpoint for
connecting services. The contract with which services are exchanged
over that endpoint is the interface. From a business analyst’s
perspective, an API is the connection point between elements in the
supply chain. It makes tremendously greater sense to have software
adapt itself to individual services, and facilitate the APIs that are already
emerging in business.

The digital transformation that is truly necessary here is for even the most
innovative software in use today to quite literally get with the program. It is
actually Kubernetes that is in a race against time to keep up with the
transformation going on upstairs.

“If you look at our overall themes for 2017, one of the big themes is to scale
the project,” explained Google’s Aparna Sinha. “That’s kind of a table-
stakes item, but we have to make sure that it’s easy for contributors to
contribute to the project; we have to make sure that the project is
architected in way that there are multiple layers; and that the core or
nucleus of the project continues to get more and more stable, so that our
users can rely on it.”

Who or What Provides Kubernetes with
Security?
The stability of the core of the Kubernetes project will be the source of its

http://www.thenewstack.io

154Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

reliability and resilience. If developers build the functions at the periphery
upon a stable core, then those functions can draw upon that core for
their support.

It’s a nice ideal, but here is a principle proven both by observation and
history: Platforms whose foundations are prone to expansion tend to lose
the interconnectedness of the functions that rely on them, and thus put
themselves at risk of losing their integrity. It’s the reason, at a very deep
level, why the PC industry is at a standstill and the mobile and cloud
computing industries are not.

“People find value in the platform,
in order to deliver value to their
users — in the same way that Linux is
ubiquitous, but not talked about much
at the distribution level anymore.”
-Caleb Miles, CoreOS.

“I think we have an obligation to provide users with a secure
environment,” stated Brendan Burns, one of Kubernetes’ lead engineers,
now a partner architect at Microsoft. “But at some level, security is a
continuum. We want to make sure people can’t shoot themselves in the
foot. But we also understand, there’s going to be a continuum depending
on the kinds of data that you’re using, and there are going to always be
add-on tools that some people are going to want to use, add-on
configurations.

“I think we do want to make sure that, when there are things like security
policy and other APIs that users are going to use, we want to make sure

http://www.thenewstack.io
https://www.linkedin.com/in/calebamiles/
https://www.linkedin.com/in/brendan-burns-487aa590/

155Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

those APIs work well in the services that we’re deploying and providing our
customers with,” Burns continued.

The Platform People See
It’s a message with a deeper implication: Kubernetes will continue to
surface itself in a variety of customer-facing platforms with big vendor
brands. It will be these vendors that present the orchestrator with the
more conventional image enterprise IT decision makers are looking for,
along with the single source of support. But it may also be these vendors
that provide the system with the security methods necessary for it to
become adopted by enterprises, while maintaining compliance with the
policy-driven mechanisms they already have in place.

“Kubernetes as a platform allows for many other systems to integrate with it,”
explained CoreOS’ Caleb Miles. Miles cited GitLab open source code review
project as one example of tight Kubernetes integration, “to provide more of
a higher-level platform experience for development teams using GitLab.

“So the Kubernetes platform tries to be rather unopinionated about how
other projects interact with Kubernetes,” he continued. “Application
developers can push their code directly to Git; GitLab picks up those
changes, can run the tests defined by the developers; and then after
running those tests, can deploy those applications directly to Kubernetes.”

The mental picture Miles draws depicts a system that integrates Kubernetes
so tightly that the application utilizing it may as well have consumed it,
rather than the other way around. “This gives third-party platforms, tools
and vendors an opportunity to build a rich ecosystem on top of Kubernetes
that is tailored to the experiences expected by their user base,” he said.

GitLab absorbs Kubernetes as the interchangeable orchestration engine of
its continuous integration / continuous deployment (CI/CD) system. Now,
Kubernetes engineers are starting to paint a picture of a security system

http://www.thenewstack.io
https://about.gitlab.com/

156Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

that absorbs the orchestrator in a similar way, specifically with respect to
implementing existing network security policies.

The Policy People Trust
Although its existence pre-dates the turn of the century, policy-driven
security is, for a great many enterprises, a very new thing. But it is not as
new as Kubernetes — which, for those whose IT decision makers are
aware of its existence, may as well have happened last week. This new
wave of security is modeled on the hypervisor’s capacity to serve as a
gateway, protecting processors from executing damaging or malicious
code from first-generation virtual machines. Replacing virtual machines
(VMs) with Docker-style containers this early in the security system’s life
cycle is not an option for them.

While staging Kubernetes environments inside VMs may protect these
environments the same way hypervisor-based security protects
applications in VMs, this also severely constrains organizations’ options for
scalability and cross-cloud deployment — two of the big virtues of
Kubernetes in the first place.

“Kubernetes, from the beginning,
was many components working
together. So it’s not like it’s a
necessarily monolithic behemoth.”
-Tim Hockin, Google.

In the current Kubernetes structure, who or what determines the
securability of the platform’s features and functions? Or is there a means
within the individual SIGs to delegate ownership of security matters to
particular people?

http://www.thenewstack.io
http://www.hockin.org/~thockin/

157Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

“I would say the first strategy,” responded Google vice president of
infrastructure Eric Brewer, “is to try to make it so that, in most of these
places, the security is not in scope.”

What’s that supposed to mean? “We’re assuming, for example, that you’re
running inside a VM if you need to,” said Brewer. “And that takes care of a
certain range of attacks. There are other places — one obvious one is
identity — where that code does have to be very carefully scrutinized and
needs extra review. So I would say, the first job is for architects to know
where they need to be careful and where they can be a little more
freelance. And the good news is, most places, you can kind of wing it and
be okay. But there are definitely places like how you mount a volume, or
how you do identity, or what network interposition you allow, where you
have to be pretty darn careful. And then it’s good to have many people
look at those things.”

The Identity People Know
Identity — specifically, the digital authentication of an agent in a system
— is the focus of many Kubernetes security projects today, many of which
are arguably (until otherwise noted) in scope. Since version 1.6 was
introduced in March 2017, the orchestrator has supported role-based
access control (RBAC), which in this instance is essentially a set of
permissions that describe a role that may be attributed to an identity.

All that having been said, identity is not a native component of
Kubernetes. There’s an architectural reason for this: Identity is one of
those virtues that assumes a fixed state. In infrastructure security, identity
is granted to things whose existence is presumably assured. By definition,
a container is ephemeral. Its continued existence is assuredly limited.

What’s more, an identity is a state — a representation made by data of a
particular property or characteristic.

http://www.thenewstack.io
https://www.linkedin.com/in/eric-brewer-1031254/
https://docs.oracle.com/cd/E23824_01/html/819-0690/gejgf.html

158Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

“There’s a bunch of work in identity and secrets that we need to do,” said
Microsoft’s Brendan Burns. “We really don’t have identity throughout the
stack. We’re just starting to do things like add Active Directory integration
for Azure Container Service; we’re just starting to think about, what does it
mean to use a cloud-provided secrets service like Key Vault to provide
secrets into your cluster?”

In an easier world to imagine, an application can identify itself to an
authentication system by way of a digital certificate. In a world where the
application is represented by a variable number of microservices, many of
them redundant, scattered across the cloud, designed intentionally for
statelessness, what would a single certificate be certifying?

And if you think about it further, a secret is, by definition, a state. Logically,
it’s the very opposite of a stateless system; a secret is a unit of data that
two components maintain independently from one another, to provide
some sort of link between them. Imagine the session key shared between
your browser and a web host. Now picture thousands of similar articles
being shared simultaneously between microservices. If some services
blink out of existence, how does the system know which remaining
services are sharing what secrets?

“With secure pods, each pod would
have its own identity that’s verifiable
… The correct way to think about it
is, a single-tenant pod on a multi-
tenant node.”
-Eric Brewer, Google.

http://www.thenewstack.io
https://azure.microsoft.com/en-us/services/key-vault/
https://www.linkedin.com/in/eric-brewer-1031254/

159Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

If problems this fundamental are to be resolved “out of scope,” as
Google’s Eric Brewer suggests, then the solution — wherever it comes
from — will need to be integrated into Kubernetes very directly. It can’t be
bolted on like an afterthought; it needs to be capable of addressing, and
even augmenting, the basic architecture of the system. Otherwise, the
link between the security package and the orchestrator will always be the
weakest one.

“Kubernetes provides a number of different mechanisms that are very
flexible,” explained Google’s Aparna Sinha. “There are different
implementations that you can use on different clouds, or different
on-premises environments. There are different mechanisms, obviously,
for authentication, authorization and identity; but also for role-based
access control, and previously, attribute-based access control. Then for
securing the container interface — for adding security policies, whether
that’s using AppArmor, or SELinux or other Linux implementations.”

CoreOS has helped the CNCF assemble the Kubernetes Security Release
Process, which is a group of volunteer engineers who coordinate the
response to vulnerabilities once they’re discovered and responsibly
disclosed. It’s a way of automating the workflow that leads from patch
discovery to remediation. But as the orchestrator’s architects have
stated publicly, for Kubernetes to evolve to what can rationally be called
a platform, it needs to adopt some fundamental identity tools,
including means to reliably and exclusively identify nodes, pods and
containers.

“Increasingly,” Sinha added, “we’re working on node security and
pod-level security. The roadmap for Kubernetes to have security
capabilities is fairly robust and extensive. Any particular implementation,
on any particular cloud, will use these capabilities differently.”

http://www.thenewstack.io
http://wiki.apparmor.net/index.php/Main_Page
https://selinuxproject.org/page/Main_Page
https://github.com/kubernetes/community/blob/master/contributors/devel/security-release-process.md
https://github.com/kubernetes/community/blob/master/contributors/devel/security-release-process.md

160Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

The Extensibility People Expect
One of the reasons for the variation of capabilities across Kubernetes
implementations is due to a recent, major alteration to its extensibility
model.

“We had this old concept called ThirdPartyResource,” explained
Brewer. “This was one of the primary extension mechanisms that people
were using — things like CoreOS operators, and other people doing things
based on ThirdPartyResource, which lets you extend the Kubernetes
API in sort of a native way.

“That trial by fire … showed some weaknesses,” he admitted. “So that
has evolved, and we’ve got a new replacement for it called the
CustomResourceDefinition [CRD]. It’s a new iteration on that idea.”

Specifically, the CRD enables an outside service to identify a resource that
the orchestrator will treat as though it were the same class as a pod
(which is a native class of resource). So while we’ve come to think of
Kubernetes as a maintainer of pods, or groups of containers, by virtue of
this extensibility, it can equally instantiate and orchestrate other
structures at a very low level.

“At some level, security is a
continuum. We want to make sure
people can’t shoot themselves in the
foot.”
-Brendan Burns, Microsoft.

“This gives a new opportunity for the ecosystem to offer third-party
extensions to the Kubernetes system,” said Brewer, “that really, truly

http://www.thenewstack.io
https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-third-party-resource/
https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-third-party-resource/
https://www.linkedin.com/in/brendan-burns-487aa590/

161Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

behave like native things. This both gives us an opportunity to modularize,
and vendors a chance to innovate and do creative things that we never
would have thought about.”

If the final security model for the orchestrator truly has yet to be conceived,
then CRD could throw open the floodgates for every conceivable idea of
what that model should be. Typically, a security model for a platform must
follow the existing context of that platform. CRD blows open the
architectural model at the contextual level, letting outside parties go into
the basic diagram, if you will, and draw rectangles with all new colors for
completely ingenious purposes.

As Brewer further explained, Kubernetes had recognized the natural
security boundary of a compute operation — the “compute boundary,” for
short — as the virtual machine. “That’s the one that’s been well-tested
and has a proven track record,” he said.

“Up until very recently, Kubernetes has made a cluster be a single entity, in
terms of the security. If you have access to a cluster, you have access to
all the nodes in the cluster. In [Kubernetes] 1.7 we’re making the node be
a security boundary, separate from the other nodes in the cluster. That
finer granularity is important for lots of different use cases. But it’s still
based on the machine being the boundary.”

The Permutation No One Expected
Brewer said he’s personally in favor of the idea of the pod being a natural
security boundary. One suggestion he’s already made to the Kubernetes
community describes a secure pod — an extension of the basic pod
class, whose behavior would differ substantially from that of the basic
pod. Theoretically, he said, identity and authenticity of basic resources
could be managed from within a secure pod, whose life cycle follows its
own rules.

http://www.thenewstack.io

162Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

Pods could take on new permutations: for example, nested virtualization
— literally pods within pods. Or perhaps a single pod might cohabit
multiple VMs simultaneously. Why? In an environment whose architects
extol the virtues of statelessness, identity — the ultimate instance of state
in a system — may be pretty difficult to reconcile. And even though
Kubernetes makes good attempts at trying to reconcile the issue of
statefulness by means of etcd — which one CoreOS developer calls “the
keeper of the state” — identity is not something representable by a key/
value store.

“ In my mind, this is the real cloud
that I’ve wanted for a long time —
which is not based on moving your
machine from a data center on-prem
to a data center in the cloud.”
-Eric Brewer, Google.

Accomplishing this quasi-dimensional model, where state and
statelessness can co-exist, requires a decision on the part of the
Kubernetes community as to the identity and location of its new security
boundary — the entity to which policy refers. Already, said Eric Brewer,
that boundary has moved from the cluster to the node, though in the
future he would like for it to be even finer-grained. “That’s something I
have to work with the community to establish,” he said.

“With secure pods, each pod would have its own identity that’s verifiable,
and it would not be able to interfere with the other pods on the same
physical machine … The correct way to think about it is, a single-tenant
pod on a multi-tenant node.”

http://www.thenewstack.io
https://www.linkedin.com/in/eric-brewer-1031254/

163Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

The Accessibility People Demand
Verifiability in this context mandates that Kubernetes’ engineers not
re-invent the wheel here. The secure part of the pod will need to be
recognizable to whatever system presently identifies entities in existing
data centers. For this reason, the orchestrator’s engineers will need to
adapt the platform further, to embrace network policies that already
exist, in whatever forms they exist.

“I think what happened with the Network Policy API is a good model
going forward,” said Gabe Monroy, Microsoft Azure’s principal program
manager for containers, and the former chief technology officer of Deis
— the producer of the Helm deployment manager for Kubernetes,
recently acquired by Microsoft.

“ Instead of everything running in
one monolithic application for your
supply chain, the things that make
up the service you deliver come from
a bunch of different pieces and parts.
And that supply chain is APIs.”
-Brian Gracely, Red Hat.

“By default, prior to Kubernetes 1.3, network access control and ingress/
egress policies inside the cluster were basically wide open,” Monroy
continued. “And a number of security vendors with a networking focus got
together and said, ‘Look, we need to fix this, but we need to do it in an
interoperable way.’ The result of that work was the Kubernetes Network
Policy API, which specifies basically a schema and a way to do default-

http://www.thenewstack.io
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://www.linkedin.com/in/briangracely/

164Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

deny access policy across a cluster; and then a way to use the Kubernetes
label selectors to define which containers can talk to each other, both for
ingress and egress.”

The model Monroy refers to that he likes is not so much the policy model
as the collaboration that made it feasible. The participation of a plurality
of security vendors, he said, enabled them to come up with a system that
was not a least-common denominator for policy, but rather a platform
with decoupled and interchangeable components.

One project whose goal is to collect vulnerability data from containers, and
put that data to use in a protection mechanism, is CoreOS’ Clair. CoreOS is
a participant in Kubernetes’ Network Policy API. Another is is Twistlock,
whose principal product is a commercial container security platform.

As Twistlock CTO John Morello remarked, it won’t help companies in his
position for any orchestrator’s security architecture to be too specific to
itself, “such that we build separate things for Kubernetes versus [Docker]
Swarm versus [Mesosphere] DC/OS. The more standardization there is, in
terms of the ways an orchestrator might say, ‘Before I run something,
there’s a standard way that I’m going to check to see with some external
service whether I should run this ...’ that would make it easier for
customers to integrate those tools together.”

Already, Twistlock customers can deploy its security console as a
Kubernetes pod, and deploy its Defender agents to multiple nodes
simultaneously by way of a specified DaemonSet — a policy that
mandates the orchestrator run specified pods within each node. But the
methodologies for accomplishing this today may be a bit too Kubernetes-
specific for enterprises to adopt them in large numbers. By instituting a
more abstract, multi-level, decoupling mechanism, Kubernetes
developers may ensure that whatever policies run outside the platform

http://www.thenewstack.io
https://coreos.com/clair/docs/latest/
https://www.twistlock.com/about-us/team/john-morello/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

165Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

are, by definition, never fine-tuned solely for Kubernetes.

“Each of those security vendors do provide a different policy enforcement
backend for those things,” stated Microsoft’s Gabe Monroy. “I think that’s a
good model going forward; that said, there are cases where people are
going to have unique value that they want to add, and they may want to
do it outside the context of the Kubernetes community. I think we should
welcome that, too, because there are types of innovation that are going to
warrant both approaches.”

What Will the Platform Be in Three Years’
Time?
By naming this volume “The State of the Kubernetes Ecosystem,” we make
a clear presumption that the ecosystem — the establishment of cyclical
economic processes intended to benefit all of their participants —
revolves around Kubernetes, and will continue to do so. Yet this is actually
an open question.

“For a long time, when people were
very intimidated by the complexity
of Kubernetes, I always encouraged
them to think about where
Kubernetes came from, why it exists,
and what kinds of problems it was
trying to solve.”
-Laura Frank, Codeship.

http://www.thenewstack.io
https://www.linkedin.com/in/laurafrank/?ppe=1

166Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

In asking DevOps professionals for the reasons they believed Linux
assumed a pinnacle position in their data centers — often ousting
Windows Server from its perch — many will tell you that Linux enabled the
creation of platforms that would never have happened before, and that
those platforms in turn cemented Linux’ place among servers and in the
cloud. At a certain point in history, Linux was a passenger on this journey.

Some believe the history of Docker will take similar turns. And many see
such a path for Kubernetes.

“I believe, fundamentally, that Kubernetes is just a small part of this cloud-
native revolution,” remarked Google’s Tim Hockin, “and hopefully it’s a
catalyst for the way people think about how to run their workloads. But
just like Linux, it is not the end goal in and of itself. Now, three years isn’t
that long of a time horizon, but I think by three years from now, we’ll be
well down this path towards the cloud-nativization efforts, that we will
hopefully see a lot more enterprise adoption of containers and
Kubernetes. These things are doing great, but enterprise is very slow to
take off.”

Hockin would like to see, by 2020, the command-line tools that have come
to define Kubernetes in its short lifespan, such as kubectl, become the
engines of broader, client-side toolsets — for example, like ksonnet, an
implementation of Google’s JSON templating language called called
jsonnet, that compiles higher-level declarative code into Kubernetes-
native YAML files. The richer the abstractions available to developers and
operators on the client side, he believes, the more likely that organizations
will find themselves adopting Kubernetes without even really knowing
they’ve done so.

http://www.thenewstack.io
http://ksonnet.heptio.com/

167Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

“The roadmap for Kubernetes to
have security capabilities is fairly
robust and extensive. Any particular
implementation, on any particular
cloud, will use these capabilities
differently.”
-Aparna Sinha, Google.

“I hope that, within three years, Kubernetes is just sort of assumed to
exist,” stated Hockin, “and it becomes just a tool in the toolbox like a Linux
server. You remember, there was once a time when the idea of bringing up
a Linux server was something you had to really waffle over, debate, and
talk to your boss about. And now, when you talk about servers, Linux is
just sort of assumed as the default. And when people tell me they’re
bringing up a Windows Server, that’s the exception, not the rule.”

Red Hat’s Brian Gracely believes the Kubernetes brand will not be so
sublimated by 2020.

“I absolutely think we will have people talking about Kubernetes. It’s still
only a couple of years old,” said Gracely. “We look at other projects that
have lasted for periods of time, and there are still communities around the
technology. I think the team that works on OpenShift is going to be very
focused on, how are we helping customers become really successful in a
fast period of time, to make a change to my business? We’re going to
spend the next couple of years getting platforms deployed all over the
place, people realizing the value of not having to build your own platform.

http://www.thenewstack.io
https://twitter.com/apbhatnagar?lang=en

168Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

And then I think we’ll see customers who say, ‘Look, those first few flowers
began to bloom. How do I scale this?’”

“I think in three years, we’ll be talking about all the things that people are
building with things that run on top of Kubernetes,” pronounced CoreOS’
Caleb Miles. “I believe we’ll see amazing TensorFlow operators, open
source machine learning tools, the next-generation data stores, and
traditional relational databases. I think where we’ll be in three years is
talking about how easy it is for new entrants to build and deploy complex
applications, on top of modern platforms like Kubernetes.”

But the attention that these applications and use cases would be
generating, may come at the expense of the platform supporting it all.

“I believe that certainly the details of lower levels of the infrastructure will
begin to fade,” Miles continued. “In 2017, we’re talking a lot about the
applications we’re building that have moved beyond a single node — a
single server node, desktop node or a node in the data center … I think
we will continue to see that trend: building more and more complex
applications, and deploying them to platforms. And I think that
conversation will be about the things that we’re building, and less about
the platform itself. People find value in the platform, in order to deliver
value to their users — in the same way that Linux is ubiquitous, but not
much talked about at the distribution level anymore.”

Ihor Dvoretskyi, who manages the Kubernetes product line for commercial
platform maker Mirantis, agrees … up until the part where it drops out of
the public conversation. “I would compare Kubernetes with Linux, and I
would name Kubernetes as Linux for cloud-native applications,”
Dvoretskyi said.

“I can see the ecosystem of Kubernetes will grow, but at the same time,
the Kubernetes core will focus mostly on stability,” he continued. “I can

http://www.thenewstack.io
https://www.tensorflow.org/
https://www.linkedin.com/in/idvoretskyi/?locale=en_US

169Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

see many vendors, who are producing Kubernetes as the core for their
commercial projects, actively using it right now. The same situation with
end users: Many companies that have switched from legacy technologies
to cloud-native to microservices, are using Kubernetes for their new
solutions. And I’m really happy to see that. And I’d like to see that in three
years, but with a much bigger scale in the market.”

“There are definitely places like
how you mount a volume, or how
you do identity, or what network
interposition you allow, where you
have to be pretty darn careful.”
-Eric Brewer, Google.

“I think that conformance, stability, and project and community health are
critical to the future that we’re imagining,” said Google’s Aparna Sinha.
“But assuming that we get those things right, I think what will happen with
Kubernetes is that it will become increasingly the container orchestration
platform that is used across different infrastructure environments. And it
will become the most deployed, de facto standard for that — assuming we
get the other three things right.

“Right now, there are a lot of different distributions of Kubernetes,” Sinha
continued. “We think there will be some that will have critical mass, and
users will use a set of distributions on multiple, different clouds, in
multiple, different environments, and be able to make their workloads
portable across those environments. The second piece of it is, what’s on
top of Kubernetes. And I think that there’s a host of different developer
tools that will be developed, both within [Google Cloud Platform] as well

http://www.thenewstack.io
https://www.linkedin.com/in/eric-brewer-1031254/

170Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

as in the community. Those will make it such that developers do not need
to think about Kubernetes itself, and will be able to run their applications
and achieve the benefits — for example, integration with CI/CD systems,
logging, monitoring and all the other aspects that developers rely on.
Those things that there are many of today — as the technology matures,
there will be a few that will emerge as the best tools, and those will
become used more and more.”

“If we’re going to survive as a project, we have to do this: We have to allow
for flexibility and heterogeneity and openness,” said Microsoft’s Brendan
Burns, “and people building solutions on top and extending the project
outside of the core project, in order for us to not become stuck in what we
have done before, and enable the breadth of community that we need to,
in order to truly be successful.”

Burns foresees the Kubernetes ecosystem evolving into an ecosystem
where it’s one of many important components.

“A programming language has its core programming syntax, and then it
has maybe a standard library that the language owners are also
responsible for, but usually a broader group of people,” Burns continued.
“And then there’s an ecosystem of libraries that develop around it. And I
think Kubernetes will be the same way. We want to have a really crisp,
well-defined, principled core, maybe some standard patterns, and then a
really rich ecosystem of libraries, utilities, and tools that people can
mix-and-match to find the solution that works for them. That’s the ideal
way that you survive. Otherwise you just become a niche product that
only works in a very specific set of circumstances.”

“Kubernetes,” believes Google’s Eric Brewer, “is going to be the platform of
platforms.

“As for any domain that’s specialized … you can build any kind of Platform

http://www.thenewstack.io

171Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

ROADMAP FOR THE FUTURE OF KUBERNETES

as a Service using Kubernetes as your substrate. And that is very powerful.
In fact, it solves one of the problems with domain-specific platforms: If it’s
too domain-specific, you get some leverage from that, but you also can
get stuck there, and it’s hard to get out and do things the platform wasn’t
intended for. If you build something domain-specific on top of Kubernetes,
and you want a little more than the domain offers, you can back off to
Kubernetes. And now you have a very flexible solution to a wide range of
problems.

“But also, taking a step back,” Brewer continued, “in my mind, this is the
real cloud that I’ve wanted for quite a long time — which is not based on
moving your machine from a data center on-prem to a data center in the
cloud. That is a useful transition. But this transition is much more useful.
This is about, let’s program to processes and services and APIs, and make
that our foundation for building the cloud. That’s a much more powerful
transformation than moving VMs into someone else’s data center.”

Every adoption and implementation of a digital technology platform has
been a process of transition. What’s different with Kubernetes is that it’s
about thinking smaller to get bigger. The transition to microservices
mandates a mindset shift to a very foreign way of thinking about business
processes — both the ones we’re transitioning and the new ones we’re
creating. But we could very well find ourselves at the tail end of the
transition with less junk left over — less virtual machine overhead,
reduced latency, far greater performance. This time, we could be
automating the things worth automating.

http://www.thenewstack.io

172Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CLOSING
Container orchestration is a genuinely new concept in the history of
computing. It is the modern manifestation of web services at the most
granular of levels. In the late 1990s, when the concept of web services
was created, software developers and network engineers toyed with the
idea of building directories of common functions that could be called
remotely through common interfaces. For a time, the tech press
concocted a war between Microsoft and Novell for the right to set the
standard for such interfaces.

When knowledge management applications first tested the limits of
ordinary servers, a new type of load balancing scheme was created —
one that listened to the type and context of the requests being received,
and that responded by dispatching the call to a server based on its
availability. When that server became virtual, the dispatch call became
easier, and the network supporting that dispatch could become
software-defined.

But now, the server in that model has become an individual function: a
microservice. And now, Kubernetes and the ecosystem that incorporates
it have made it feasible for a very granular service, anywhere in the
network, to respond to a remote call from anywhere on the planet. The
dispatching mechanism, having manifested itself from those first web
applications, has become a sophisticated proxy. And the means for
maintaining these individual services are being hardened and resolved
into pipelines. Now, these services can be serviced and maintained on an
individual basis, and the process of overseeing the entire scope of the
deployed application life cycle can be automated.

“Kubernetes Deployment Patterns and Pipelines” will be the second book
in our series about the Kubernetes ecosystem. It will focus on the

173Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CLOSING

mechanisms that support this new class of applications and the
infrastructure on which they’re built. Until then, take good care of you
and yours, and we’ll see you on The New Stack.

https://www.thenewstack.io

174Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CHAPTER #: CHAPTER TITLE GOES HERE, IF TOO LONG THEN...

KUBERNETES
SOLUTIONS DIRECTORY
Although this directory has almost a hundred entries, it is not meant to be
comprehensive. Instead, it lists many of the projects and vendor offerings
that are used to deploy and manage Kubernetes and the applications run-
ning on it. Listings are divided into four sections to make it easier for the
reader to quickly review, and are only a starting point when reviewing solu-
tions you may want to use or consider.

http://www.thenewstack.io

175Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

Product/Project (Company or Supporting Org.) Type of Distribution

APPUiO (APPUiO) Platform
Platform as a Service (PaaS) based on Red Hat OpenShift. The Swiss company targets developers as customers.

Canonical Distribution of Kubernetes (Canonical) Platform
Canonical's distribution provides customers access to stable upstream Kubernetes releases, as well as access to early
builds of the upstream Kubernetes development branch. Canonical has optimized Kubernetes to run with its existing
infrastructure and DevOps tools, but it also works across all major public clouds and private infrastructure.

CloudStack Container Service (ShapeBlue) Platform
A Container as a Service (CaaS) solution that combines the power of Apache CloudStack and Kubernetes. It uses Kubernetes to
provide the underlying platform for automating deployment, scaling and operation of application containers.

Container Platform (Greenqloud) Platform
Cloud management system with Kubernetes container and cluster engine built in.

Deis Workflow (Microsoft) Platform
A Kubernetes-native PaaS focused on developer self-service and operational flexibility. Deis Workflow helps teams quickly
get up and running with Kubernetes on any public cloud, private cloud or bare metal cluster.

Diamanti (Diamanti) Platform
A purpose-built container infrastructure that addresses the challenges of deploying containers to production while letting
users keep their existing infrastructure. It does switching native on bare metal, plugging into a CPU bus.

fabric8 (Red Hat) Platform
Applications can read and write data into etcd. A simple use case is to store database connection details or feature flags in
etcd as key-value pairs. These values can be watched, allowing your app to reconfigure itself when they change.

Fission (Platform9) Platform
A framework for serverless functions on Kubernetes.

FusionStage (Huawei) Platform
An enterprise-grade Platform as a Service product, the core of which is based on mainstream open source container
technology including Kubernetes and Docker. It is available for both public cloud and private data center deployment.

KUBERNETES
DISTRIBUTIONS
Platforms, products, services and projects that include Kubernetes as a distribution.

http://www.thenewstack.io
http://appuio.ch/en/
https://www.ubuntu.com/cloud/kubernetes
http://www.shapeblue.com/cloudstack-container-service/
https://www.qstack.com/2016-rearview-mirror-kubernetes-launching/
https://deis.com/workflow/
https://diamanti.com/products/
http://fabric8.io/
http://fission.io/
http://developer.huawei.com/ict/en/site-paas

176Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: KUBERNETES DISTRIBUTIONS

Product/Project (Company or Supporting Org.) Type of Distribution

Getup Cloud (Getup Cloud) Platform
A platform built with Docker, Kubernetes and OpenShift. It is currently offered as a trial by a Brazilian startup.

Giant Swarm (Giant Swarm) Platform
A hosted container solution to build, deploy and manage containerized services with Kubernetes as a core component. It
offers customers fully-managed private Kubernetes clusters, including management of master and nodes. It is offered "as a
service" or can be deployed and managed on premises by Giant Swarm.

Google Container Engine (Google) Platform
Google Container Engine is a cluster management and orchestration system that lets users run containers on the Google
Cloud Platform.

Hasura Platform (34 Cross Systems) Platform
A platform for creating and deploying microservices. This emerging company's infrastructure is built using Docker and
Kubernetes.

Hypernetes (HyperHQ) Platform
A multi-tenant Kubernetes distribution. It combines the orchestration power of Kubernetes and the runtime isolation of
Hyper to build a secure multitenant container management platform.

IBM Bluemix Container Service (IBM) Platform
Use IBM Containers to run Docker containers in a hosted cloud environment on IBM Bluemix. IBM Containers provide full
hosting and life cycle management of Docker containers, along with automatic and integrated log analytics and monitoring,
elastic scaling with auto-recovery, reliability tools, load balancing and routing, persistent storage, security services and a
private image registry.

K2 (Kraken 2) (Samsung CNCT) Platform
Enables deployment of a Kubernetes cluster using Terraform and Ansible on top of CoreOS.

Kel (Eldarion) Platform
An open source, Kubernetes-based PaaS built in Python and Go, that makes it easy to manage web application deployment
and hosting through the entire software life cycle.

Kismatic Enterprise Toolkit (KET) (Apprenda) Platform
KET is Apprenda’s commercially supported and fully open source Kubernetes offering. It provides a set of default cluster
services that go beyond the basic automation of installing and running Kubernetes on a few nodes or on a laptop.

Kontena (Kontena) Platform
Kontena is a container orchestration tool. It abstracts containers into application services and establishes an internal network
between linked services, making it easy to deploy and scale applications across multiple hosts.

Kops (Cloud Native Computing Foundation) Platform
Kubernetes Operations (kops) enables a production-grade Kubernetes installation, upgrades and management.

KUBE2GO (Platform9) Platform
Tool to deploy Kubernetes clusters to public clouds. As of publication, only AWS is supported.

http://www.thenewstack.io
https://getupcloud.com/
https://giantswarm.io/product/
https://cloud.google.com/container-engine/
https://hasura.io/
https://github.com/hyperhq/hypernetes
https://console.bluemix.net/docs/containers/cs_ov.html#cs_ov
https://github.com/samsung-cnct/k2
http://www.kelproject.com/
https://apprenda.com/kismatic/
https://www.kontena.io/
https://github.com/kubernetes/kops
https://kube2go.io/

177Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: KUBERNETES DISTRIBUTIONS

Product/Project (Company or Supporting Org.) Type of Distribution

Kubernetes (Cloud Native Computing Foundation) Platform
Kubernetes is an open source Docker orchestration tool. Google initially developed Kubernetes to help manage its own LXC
containers. Stateful support is done through a new object called Pet Set. In addition, there are many networking and data-
volume plugins available.

Kubernetes Services Managed by LiveWyer (LiveWyer) Platform
The consulting company manages Kubernetes implementations and provides Kubernetes training.

Kubo (Pivotal) Vendor

Provides a solution for deploying and managing Kubernetes with BOSH alongside Cloud Foundry.

Last.Backend (Last.Backend) Platform

A platform built on top of Kubernetes with a command-line toolkit and UI to deploy apps and manage infrastructure.

Managed Kubernetes (Kumina) Vendor

Dutch consulting company that provides managed services.

Minikube (Cloud Native Computing Foundation)

Minikube is a tool that makes it easy to run Kubernetes locally. Minikube runs a single-node Kubernetes cluster inside a
virtual machine (VM) on your laptop. It is for users looking to try out Kubernetes or develop with it day-to-day.

OpenShift Container Platform (Red Hat) Platform

A container application platform that can span across multiple infrastructure footprints. It is built using Docker and
Kubernetes technology.

OpenShift Origin (Red Hat) Platform

OpenShift Origin is the upstream open source version of OpenShift and is meant to allow for development of cloud-native
applications. OpenShift is a PaaS built on Docker containers that orchestrates with Kubernetes. It also has Atomic and Red
Hat Linux components.

Photon Platform (VMware) Vendor

A container-optimized cloud platform that provides on-demand access to Kubernetes clusters.

Pivotal Container Service (Pivotal) Vendor

A commercial version of Kubo that makes it easy to deploy Kubernetes and consume it in environments running vSphere or
Google Cloud Platform.

Platform9 Managed Kubernetes (Platform9) Vendor

Kubernetes offered as a managed service. Customers can utilize Platform9's single pane of glass, allowing users to
orchestrate and manage containers alongside virtual machines (VMs). In other words, you can orchestrate VMs using
OpenStack and/or Kubernetes.

Rancher (Rancher Labs) Vendor

Rancher natively supports and manages Kubernetes, Mesos and Swarm clusters.

http://www.thenewstack.io
https://github.com/kubernetes/kubernetes
https://www.livewyer.io/services/kubernetes-experts/kubernetes-managed-service-provider/
https://pivotal.io/kubo
https://lastbackend.com/
https://www.kumina.nl/managed_kubernetes
https://github.com/kubernetes/minikube
https://www.openshift.com/container-platform
https://www.openshift.org/
http://www.vmware.com/products/photon-platform.html
https://pivotal.io/pks
https://platform9.com/products/kubernetes
http://rancher.com/kubernetes

178Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: KUBERNETES DISTRIBUTIONS

Product/Project (Company or Supporting Org.) Type of Distribution

Red Hat OpenShift (Red Hat) Platform

Integrated, web-based developer environment based on the Eclipse Che project (acquisition of Codenvy), source code
repository and CI/CD pipeline. Development environment integrated with OpenShift Online.

Red Hat OpenShift Container Platform (Red Hat) Platform

A container application platform that can span across multiple infrastructure footprints (bare metal, virtual machine,
VMware, OpenStack, AWS, Azure and GCP). It is built using Docker and Kubernetes technology. It integrates multitenant
networking (SDN), multiple types of storage, container registry, Red Hat middleware and application services, and Open
Service Broker. It runs on RHEL hosts, is deployed using Ansible and managed with CloudForms.

OpenShift Dedicated (Red Hat) Platform

Private, high availability OpenShift cluster, hosted on Amazon Web Services (AWS) or Google Cloud Platform, and
operated as a cloud service by Red Hat.

Red Hat OpenShift Online (Red Hat) Platform

Red Hat’s public cloud version of OpenShift that developers around the world can consume as a service (free and paid tiers).
It is built using Docker and Kubernetes technologies.

StackPointCloud (StackPointCloud) Vendor

Allows users to easily create, scale and manage Kubernetes clusters of any size with the cloud provider of their choice. Its
goal is to be a universal control plane for Kubernetes clouds.

Supergiant (Qbox) Vendor

Supergiant is an open source framework that runs Docker containers. It hosts stateful, clustered applications utilizing
Kubernetes under the hood. It uses its own structures and code for persistent storage and external load balancing. Qbox,
the creator of Supergiant, provides commercial support.

SUSE Container as a Service Platform (SUSE) Vendor

An application development and hosting platform for container-based applications and services. It uses SUSE Linux
Enterprise MicroOS and Kubernetes.

Symphony (Stratoscale) Vendor

Managed Kubernetes offered as a service.

Tectonic (CoreOS) Vendor

Tectonic is the enterprise-ready Kubernetes solution that delivers pure, upstream Kubernetes. Tectonic provides
automated operations allowing users to easily upgrade to the latest Kubernetes software version with one click, enables
portability across private and public cloud providers, and is always secure with LDAP, RBAC and SAML support. It is
secure and simple so organizations can easily scale applications, deploy consistently, and easily manage applications
across environments.

Along with the most current release of Kubernetes, Tectonic also includes installers to help get you up and running
quickly, a console to visually investigate your cluster, operators to manage your cluster components, and security
features to allow you to integrate with your existing security frameworks.

http://www.thenewstack.io
http://openshift.io/
https://www.openshift.com/container-platform
https://www.openshift.com/dedicated/
https://www.openshift.com
https://stackpoint.io
http://supergiant.io/
https://www.suse.com/products/caas-platform/
http://www.stratoscale.com/products/kubernetes-as-a-service/
https://tectonic.com/

179Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: KUBERNETES DISTRIBUTIONS

Product/Project (Company or Supporting Org.) Type of Distribution

Telekube (Gravitational) Vendor

A toolkit for packaging, deploying and remotely managing complex multi-node Linux applications across clouds and on
premises, all over the world. It bills itself as a private SaaS platform.

TenxCloud Container Engine (TCE) (TenxCloud) Vendor

A Kubernetes service offered by a Chinese company.

http://www.thenewstack.io
http://gravitational.com/telekube/
https://tenxcloud.com

180Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

Product/Project (Company or Supporting Org.) Type of Professional Service (if applicable)

AppController (Mirantis)

A pod that can be deployed to a Kubernetes cluster to create objects and manage dependencies.

Ark (Heptio)

A utility for managing disaster recovery, specifically for Kubernetes cluster resources and persistent volumes.

Azure Container Service (Microsoft)

Azure Container Service simplifies the creation and configuration of a cluster. The default configuration of this cluster includes
Docker and Docker Swarm for code portability; and Marathon, Chronos and Apache Mesos to ensure scalability.

Bootkube (N/A)

A helper tool for launching self-hosted Kubernetes clusters.

Cabin (Bitnami)

An iOS and Android application for managing Kubernetes applications.

cAdvisor (N/A)

cAdvisor (Container Advisor) is a Google-supported project that analyzes resource usage and performance characteristics of
running containers.

Containerd (Cloud Native Computing Foundation)

A daemon to manage containers on one machine. It is based on the Docker Engine’s core container runtime and follows Open
Container Initiative specifications.

ContainerPilot (Joyent)

Works in conjunction with other schedulers — letting them start and stop containers — with ContainerPilot orchestrating the
rest. Applications orchestrated by ContainerPilot are portable from one scheduler to another.

Datadog-Kubernetes Integration (Datadog)

Collects and monitors metrics from Kubelets in real time. It is deployed as a Docker container alongside existing workloads.

TOOLS
AND SERVICES
Offerings that help with the implementation of Kubernetes, as well as the deployment
and management of applications on top of Kubernetes.

http://www.thenewstack.io
https://github.com/Mirantis/k8s-AppController
https://github.com/heptio/ark
https://azure.microsoft.com/en-us/services/container-service/
https://github.com/kubernetes-incubator/bootkube
https://github.com/bitnami/cabin
https://github.com/google/cadvisor
https://containerd.tools/
https://www.joyent.com/containerpilot
http://docs.datadoghq.com/integrations/kubernetes

181Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: TOOLS AND SERVICES

Product/Project (Company or Supporting Org.) Type of Professional Service (if applicable)

Digital Rebar (RackN)

A container-ready cloud and hardware-provisioning platform.

ElasticKube (CenturyLink)

A service for connecting CI/CD pipelines, configuration management tools, and deploying cloud applications. It is an an open
source management platform for Kubernetes that promotes self-service for containerized applications.

Endocode (Endocode) Consulting

A German software engineering firm that has helped provided many contributions to several container-related projects.
Provides consulting services associated with Kubernetes.

Heapster (Heapster)

Enables analysis of compute resource usage and monitoring of container clusters. Heapster currently supports Kubernetes
and CoreOS natively.

Helm (Cloud Native Computing Foundation)

A Kubernetes-native package manager that helps operators declare and manage complex, multi-part applications.

Heptio Professional Services and Support (Heptio) Support

Heptio is a company by founders of the Kubernetes project, built to support and advance the open Kubernetes ecosystem.

Jetstack Container Services (Jetstack) Support

Jetstack is a consulting company focused on helping companies build a container management infrastructure.

K8S Dashboard (Distelli)

Distelli provides a dashboard to dieplay and manage applications.

K8sPort (Cloud Native Computing Foundation)

A social network with gamification features that supports the Kubernetes community.

Kolla-Kubernetes (OpenStack Foundation)

The project provides Docker containers and Ansible playbooks to deploy Kubernetes on OpenStack.

Kompose (Cloud Native Computing Foundation)

A tool to help users familiar with docker-compose move to Kubernetes.

ksonnet (Heptio)

Jsonnet is an open source JSON templating language from Google. ksonnet-lib and kubecfg provide a simpler alternative to
writing complex YAML for Kubernetes configurations.

kubeadm (Cloud Native Computing Foundation)

A part of the Kubernetes distribution that helps install and set up a Kubernetes cluster.

http://www.thenewstack.io
http://rebar.digital/
https://www.ctl.io/elastickube-kubernetes/
https://endocode.com/kubernetes/
https://github.com/kubernetes/heapster
https://github.com/kubernetes/helm
https://www.heptio.com/
http://www.jetstack.io/
https://www.distelli.com/kubernetes/
http://k8sport.org/
http://docs.openstack.org/developer/kolla-kubernetes/
http://kompose.io/
http://ksonnet.heptio.com/
https://kubernetes.io/docs/admin/kubeadm/

182Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: TOOLS AND SERVICES

Product/Project (Company or Supporting Org.) Type of Professional Service (if applicable)

Kubediff (Weaveworks)

A tool for Kubernetes to show differences between running state and version-controlled configuration.

Kubeflix (Red Hat)

Provides Kubernetes integration with Netflix open-source components such as Hystrix, Turbine and Ribbon.

Kubeless (Bitnami)

A Kubernetes native serverless framework. It supports both HTTP and event-based triggers, has a serverless plugin, a
graphical user interface and multiple runtimes.

Kubermatic (Loodse)

Makes it easy to deploy and manage multiple container clusters.

Kubernauts (Kubernauts)

Organized as a non-profit, Kubernauts provides training and consulting services. It manages the Kubernauts Worldwide Meetup.

Kubernetes Anywhere (Kubernetes Anywhere)

An automated solution that will eventually allow users to deploy Kubernetes clusters across multiple clouds.

Kubernetes Dashboard (Kubernetes Dashboard)

A general purpose, web-based UI for Kubernetes clusters. It allows users to manage applications running in the cluster and
troubleshoot them, as well as manage the cluster itself.

Kubernetes service-catalog (N/A)

Works with the Open Service Broker API to integrate service brokers with Kubernetes. It provides a way for Kubernetes users
to consume services from brokers and easily configure their applications to use those services.

Kubernetes Support (Apprenda)

Professional support for Kubernetes to handle both original implementation and ongoing operations. Apprenda offers
three tiers of support, including pay per incident.

Kubernetic (Harbur Cloud Solutions S.L.)

A desktop client to manage Kubernetes clusters.

Kublr (EastBanc Technologies)

An automated cluster management platform.

Kupespray (N/A)

A tool to deploy Kubernetes clusters. It is an alternative to kops and kubeadm.

Magnum (OpenStack Foundation)

An OpenStack API service which makes container orchestration engines, such as Docker and Kubernetes, available as first
class resources in OpenStack.

http://www.thenewstack.io
https://github.com/weaveworks/kubediff
https://github.com/fabric8io/kubeflix
http://kubeless.io/
https://loodse.com/en/
https://kubernauts.io/en/
https://github.com/kubernetes/kubernetes-anywhere
https://github.com/kubernetes/dashboard
https://github.com/kubernetes-incubator/service-catalog
https://apprenda.com/kubernetes-support
https://kubernetic.com/
http://www.kublr.com/
https://github.com/kubespray/kargo
https://github.com/openstack/magnum

183Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: TOOLS AND SERVICES

Product/Project (Company or Supporting Org.) Type of Professional Service (if applicable)

Open Service Broker API (Cloud Foundry Foundation)

The project gives developers, ISVs and SaaS vendors a way to deliver services to applications running within cloud-native
platforms such as Cloud Foundry, OpenShift, and Kubernetes. It works with the service-catalog project that is in the
Kubernetes incubator.

Poseidon (University of Cambridge)

Poseidon is Firmament's integration with Kubernetes.

Prometheus (Cloud Native Computing Foundation)

Prometheus is an open source systems monitoring and alerting toolkit, service monitoring system and time series database.

Quick Start for Kubernetes (Heptio)

A set of templates and configurations to quickly set up a Kubernetes cluster on AWS using CloudFormation and kubeadm.

ReactiveOps (ReactiveOps) Consulting

Custom builds DevOps platforms based on Kubernetes.

rkt (Cloud Native Computing Foundation)

rkt is a command-line interface (CLI) for running app containers on Linux based on the App Container Specification (appc spec).

Sematext Kubernetes Agent (Sematext)

Provides operational insights by collecting Kubernetes logs, events and metrics with out-of-the-box metrics charts,
searchable logs, and the ability to correlate logs, metrics, alerts and more. It utilizes Sematext Docker Agent to extract
information from Docker container names, and tags all logs with name space, pod, container, image name and UID.

Sonobuoy (Heptio)

A diagnostic tool that makes it easier to understand the state of a Kubernetes cluster by running a set of Kubernetes
conformance tests in an accessible and non-destructive manner.

Supergiant Support (Supergiant) Support

Supergiant is an open source framework that runs Docker containers. It hosts stateful, clustered applications utilizing
Kubernetes under the hood. It uses its own structures and code for persistent storage and external load balancing. Qbox,
the creator of Supergiant, provides commercial support.

Tack (N/A)

An alternative to using CloudFormation. It is an opinionated Terraform module for creating a highly available Kubernetes
cluster running on Container Linux in an AWS Virtual Private Cloud.

Virtual Private Pipelines (Oracle)

A Docker native, single tenant and fully managed CI/CD platform optimized for Kubernetes and working with microservices. It
offers network isolation and flexible concurrency.

Weave Scope (Weaveworks)

Weave Scope offers a real-time monitoring solution for containers.

http://www.thenewstack.io
https://openservicebrokerapi.org/
http://www.firmament.io
http://prometheus.io/
https://aws.amazon.com/about-aws/whats-new/2017/03/new-quick-start-deploys-heptio-kubernetes-on-the-aws-cloud/
https://www.reactiveops.com/
https://github.com/rkt/rkt
https://sematext.com/kubernetes/
https://github.com/heptio/sonobuoy
https://github.com/supergiant/supergiant
https://github.com/kz8s/tack
http://www.wercker.com/virtual-private-pipelines
http://weave.works/scope/

184Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

Product/Project (Company or Supporting Org.) DevOps Life Cycle Segment

AppDynamics (Cisco) Monitoring

Application and business performance software that collects data from agents installed on the host. It provides an
extension to collect data from the Docker API.

AppFormix (Juniper Networks) Monitoring

Cloud infrastructure monitoring and analysis software that runs in any public, private, multi-tenant or hybrid environment.
It includes ContainerFlow, which utilizes Intel Resource Director technology to enforce isolation between workloads and
deliver better performance for container workloads. The company is focused on analytics for operators of OpenStack and
Kubernetes.

AppsCode (AppsCode) Create

Integrated platform for collaborative coding, testing and deployment of containerized apps. Support is provided for
deploying containers to AWS and Google Cloud Platform.

Clocker (Cloudsoft) Configure

Clocker creates and manages Docker cloud infrastructures. It contains Apache Brooklyn blueprints to enable deployment
and management of Docker Swarms and Kubernetes clusters.

CloudPlex (CloudPlex) Package/Release

A cloud orchestration and management platform. It uses Chef to deploy to VMs, and Kubernetes to deploy to Docker containers.

Cobe.io (Cobe.io) Monitoring

Provides a live topology of heterogeneous infrastructure, on top of which model performance metrics and alerts are overlaid.

Codeship Pro (Codeship) Package/Release

Codeship Pro is a fully customizable continuous integration platform with native Docker support in the cloud. It makes it easy
to test and deploy your microservices and push to any registry. It’s also perfect if you want to deploy with Kubernetes, as it
comes with a convenient local CLI tool that allows you to run your builds locally, helps encrypt environment variables, and
guarantees 100% parity between your development and production environment. Codeship Pro comes with a free plan that
grants 100 builds per month, with unlimited projects, teams and users.

RELEVANT DEVOPS
TECHNOLOGIES
Tools and technologies that work with Kubernetes throughout the DevOps life cycle.
Entries are defined as primarily helping with the create, package/release, configure or
monitoring steps.

http://www.thenewstack.io
https://www.appdynamics.com/
http://www.appformix.com/
https://appscode.com
http://www.clocker.io/
http://www.cloudplex.io/
https://cobe.io/
https://codeship.com/features/pro

185Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: RELEVANT DEVOPS TECHNOLOGIES

Product/Project (Company or Supporting Org.) DevOps Life Cycle Segment

Container Builder (Google) Create

Fast, consistent, reliable builds on Google Cloud Platform.

Container Linux (CoreOS) Create

CoreOS Container Linux is a minimal operating system that supports popular container systems out of the box. The
operating system is designed to be operated in clusters. For example, it is engineered to be easy to boot via PXE and on
most cloud providers.

Draft (Microsoft) Package/Release

A tool for developers to create cloud-native applications on Kubernetes. Draft is still experimental.

Dynatrace (Dynatrace) Monitoring

Dynatrace's new suite of monitoring tools is based on its Ruxit technology. Its agent is injected into a container, which then
autodiscovers new services running on a host and can fetch data from the Docker API. Dynatrace is also developing artificial
intelligence technology to help with root cause analysis.

etcd (CoreOS) Configure

etcd is a distributed key-value store that provides a reliable way to store data across a cluster of machines. It’s open source
and available on GitHub, and is the primary datastore for Kubernetes. etcd gracefully handles leader elections during
network partitions and will tolerate machine failure, including the leader. Your applications can read and write data into
etcd. A simple use case is to store database connection details or feature flags in etcd as key-value pairs. These values can be
watched, allowing your app to reconfigure itself when they change.

Fluentd (Cloud Native Computing Foundation) Monitoring

Fluentd is an open source data collector for unified logging layers.

Forge (Datawire) Configure

Builds services based on Docker and Kubernetes. YAML files are used to specify deployment configurations.

gRPC (Cloud Native Computing Foundation) Support

A high performance, open source, general remote procedure call (RPC) framework that puts mobile and HTTP/2 first.

Istio (N/A) Monitoring

A platform to integrate microservices, manage traffic flow across microservices, enforce policies and aggregate telemetry data.
Istio's control plane provides an abstraction layer over the underlying cluster management platform.

Kong (Mashape) Configure

Kong is a management layer for APIs. It has the capability of orchestrating Dockerfiles.

Linkerd (Cloud Native Computing Foundation) Monitor

An out-of-process network stack for microservices. It functions as a transparent RPC proxy, handling everything needed to
make inter-service RPC safe, including load-balancing, service discovery, instrumentation and routing. Linkerd is built on
top of Finagle.

http://www.thenewstack.io
https://cloud.google.com/container-builder/
https://coreos.com/why
https://github.com/Azure/draft
https://www.dynatrace.com/capabilities/microservices-and-container-monitoring/
https://github.com/coreos/etcd
http://www.fluentd.org/
http://forge.sh/
http://www.grpc.io/
https://istio.io/
https://getkong.org
https://linkerd.io/

186Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: RELEVANT DEVOPS TECHNOLOGIES

Product/Project (Company or Supporting Org.) DevOps Life Cycle Segment

Loom (Datawire) Configure

Self-service provisioning for microservices in Kubernetes running on AWS. It has pre-configured models for creating
development Kubernetes clusters in AWS.

Navigator (Jetstack) Configure

Managed DBaaS on Kubernetes, Navigator is a centralized controller for managing common stateful services on
Kubernetes.

New Relic APM (New Relic) Monitoring

Application performance monitoring is at the heart of New Relic's suite of products, which it starting to call Digital
Intelligence Platform. Its agent-based approach is particularly good for troubleshooting code-related application
performance issues.

OpenTracing API (Cloud Native Computing Foundation) Monitoring

Consistent, expressive, vendor-neutral APIs for distributed tracing and context propagation.

Project Atomic (Red Hat) Create

Project Atomic hosts run applications in Docker containers with components based on RHEL, Fedora and CentOS. In addition
to Atomic Host, the project includes Nulecule, a container-based application specification that enables the use of existing
containers as building blocks for new applications.

Puppet Module for Kubernetes (Puppet) Configure

A templated configuration file to deploy Kubernetes with Puppet.

Red Hat OpenShift Application Runtimes (RHOAR) (Red Hat) Create

Currently in beta, RHOAR is a set of cloud-native, container-optimized application runtimes based on Spring Boot, Eclipse
Vert.x, Node.js and WildFly Swarm. Natively integrated with OpenShift Container Platform and Kubernetes.

StackState (StackState) Monitoring

A full stack monitoring solution that provides container monitoring.

Sysdig Cloud (Sysdig) Monitoring

Based on open source Sysdig technology, Sysdig Cloud monitors, troubleshoots and alerts on containerized environments.
Sysdig Cloud can be used as a cloud service or deployed as hosted software in your private cloud.

Tack (N/A) Package/Release

A Terraform module for creating Kubernetes clusters running on Container Linux by CoreOS in an AWS virtual private
cloud.

Telepresence (Datawire) Create

Enables local development against a remote Kubernetes or OpenShift cluster.

Terraform (HashiCorp) Configure

Terraform is a tool to build and launch infrastructure, including containers.

http://www.thenewstack.io
http://loom.run/
https://blog.jetstack.io/blog/introducing-navigator/
http://newrelic.com/application-monitoring
http://opentracing.io/
http://www.projectatomic.io/
https://forge.puppet.com/garethr/kubernetes
https://launch.openshift.io/wizard
https://www.stackstate.com/
https://sysdig.com/
https://github.com/kz8s/tack
http://www.telepresence.io/
https://www.terraform.io/docs/providers/kubernetes/index.html

187Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: RELEVANT DEVOPS TECHNOLOGIES

Product/Project (Company or Supporting Org.) DevOps Life Cycle Segment

Wavefront (VMware) Monitoring

Uses cAdvisor to collect container metrics, which are analyzed along with metrics from other systems and applications.

Weave Cloud (Weaveworks) Monitoring

SaaS that simplifies deployment, monitoring and management for containers and microservices. It integrates with
Kubernetes and provides Prometheus monitoring as a service.

http://www.thenewstack.io
https://www.wavefront.com
https://cloud.weave.works/signup

188Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

Product/Project (Company or Supporting Org.)

CoreOS Container Linux (CoreOS)

CoreOS Container Linux is a minimal operating system that supports popular container systems out of the box. The
operating system is designed to be operated in clusters. For example, it is engineered to be easy to boot via PXE and on
most cloud providers.

Container Network Interface (CNI) (Cloud Native Computing Foundation)

CNI is a project to help configure network interfaces for Linux application containers. It helps set up network connectivity of
containers and remove allocated resources when the container is deleted.

CNI-Genie (Huawei)

Enables container orchestrators to seamlessly connect to choice of CNI plugins like Calico, Canal, Romana and Weave.

Container Registry (Google)

Fast, private Docker image storage on Google Cloud Platform.

Contiv (Cisco)

Unifies containers, VMs, and bare metal with a single networking fabric, allowing container networks to be addressable
from VM and bare-metal networks.

dex (CoreOS)

dex is an identity service that uses OpenID Connect to drive authentication for other apps. Dex runs natively on top of
any Kubernetes cluster. dex is not a user-management system, but acts as a portal to other identity providers through
“connectors.” This lets dex defer authentication to LDAP servers, SAML providers, or established identity providers like GitHub,
Google and Active Directory. Clients write their authentication logic once to talk to dex, then dex handles the protocols for a
given backend.

flannel (CoreOS)

flannel is a virtual network that gives a subnet to each host for use with container runtimes. Platforms like Google’s
Kubernetes assume that each container (pod) has a unique, routable IP inside the cluster. The advantage of this model is
that it reduces the complexity of doing port mapping.

RELEVANT INFRASTRUCTURE
TECHNOLOGIES
The following include common examples of the storage, networking, compute and
other infrastructure technologies that enable the use of cloud-native environments
like Kubernetes.

http://www.thenewstack.io
https://coreos.com/why
https://github.com/containernetworking/cni
https://github.com/Huawei-PaaS/CNI-Genie
https://cloud.google.com/container-registry/
http://contiv.github.io/
https://github.com/coreos/dex
https://coreos.com/flannel/docs/latest/

189Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: RELEVANT INFRASTRUCTURE TECHNOLOGIES

Product/Project (Company or Supporting Org.)

Open vSwitch (Linux Foundation)

A production quality, multilayer virtual switch licensed under the open source Apache 2.0 license. It is designed to enable
massive network automation through programmatic extension, while still supporting standard management interfaces and
protocols. In addition, it is designed to support distribution across multiple physical servers similar to VMware's vNetwork
distributed vswitch or Cisco's Nexus 1000V.

Longhorn (Rancher Labs)

A distributed block storage system built using containers and microservices.

Minio (Minio)

Minio is an open source object storage server built for cloud applications and DevOps.

Nuage Networks Virtualized Cloud Services (VCS) (Nokia)

The datacenter and cloud networking framework of Nuage Networks Virtualized Services Platform (VSP).

Nuage Networks Virtualized Services Platform (VSP) (Nokia)

Provides software-defined networking capabilities for clouds of all sizes. It is implemented as a non-disruptive overlay for
all existing virtualized and non-virtualized server and network resources. VSP is designed to work with Docker containers,
Kubernetes and Mesos.

OpenContrail (Juniper Networks)

An Apache 2.0-licensed project that is built using standards-based protocols and provides all the necessary components for
network virtualization: SDN controller, virtual router, analytics engine, and published northbound APIs. It has an extensive
REST API to configure and gather operational and analytics data from the system.

Portworx PX-Series (Portworx)

A data layer for persistent storage that can be managed with Kubernetes.

Project Calico (Tigera)

Provides a scalable networking solution for connecting data center workloads (containers, VMs or bare metal). It uses
a Layer 3 approach. Calico can be deployed without encapsulation or overlays to provide high performance at massive
scales.

Quay (CoreOS)

A secure image registry that runs on your own servers.

Redis (Redis)

Redis is an in-memory database that persists on disk. The data model is key value, but many different kind of values are
supported.

Romana (N/A)

A network and security automation solution for cloud-native applications. Romana automates the creation of isolated cloud-
native networks and secures applications with a distributed firewall that applies access control policies consistently across all
endpoints and services, wherever they run.

http://www.thenewstack.io
http://openvswitch.org/
https://www.minio.io/
http://www.nuagenetworks.net/products/virtualized-cloud-services/
http://www.nuagenetworks.net/products/virtualized-services-platform/
http://www.opencontrail.org/
http://portworx.com/products/
https://www.projectcalico.org/
http://quay.io/
http://redis.io
http://romana.io/

190Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

CONT’D: RELEVANT INFRASTRUCTURE TECHNOLOGIES

Product/Project (Company or Supporting Org.)

Rook (Quantum)

Storage for Kubernetes apps through persistent volumes.

Trireme (Aporeto)

An open-source library curated by Aporeto to provide segmentation for cloud-native applications.

Twistlock (Twistlock)

Twistlock is cloud-native cyber security for the modern enterprise. Advanced intelligence and machine learning capabilities
automate policy creation and enforcement throughout the development life cycle. Native integration to leading CI/CD and
orchestration tools provide security that enables innovation by not slowing development. Robust compliance checks and
extensibility allow full control over your environment from developer workstations through to production.

Vitess (Google)

A database solution for scaling MySQL. It can run on Kubernetes.

Weave Net (Weaveworks)

Connects containers into a transparent, dynamic and resilient mesh. Weave Net creates a virtual network that connects Docker
containers across multiple hosts and enables their automatic discovery.

http://www.thenewstack.io
https://rook.io
https://www.aporeto.com/trireme/
https://www.twistlock.com/
http://vitess.io/overview/
http://weave.works/net/

191Ĵ THE STATE OF THE KUBERNETES ECOSYSTEM

DISCLOSURES
The following companies mentioned in this ebook are sponsors of The
New Stack: Apcera, Aporeto, CA Technologies, Chef, Cloud Foundry
Foundation, {code}, Containership, DigitalOcean, GoDaddy, HPE,
InfluxData, Microsoft, OpenStack, Packet, PagerDuty, StackRox, The Linux
Foundation, ThoughtWorks, Univa, VMware, Wercker.

Huawei is an advisory client of The New Stack.

A special thanks to Joseph Jacks for maintaining a spreadsheet of
Kubernetes distributions.

https://twitter.com/asynchio

thenewstack.io

http://thenewstack.io

	CLOSING
	Roadmap for the Future of Kubernetes
	Maintaining the
Kubernetes Life Cycle
	Issues and Challenges with Using Kubernetes in Production
	Cloud-Native Apps
Lead to Enterprise
Integration
	Buyer’s Checklist to Kubernetes
	Rethinking the
Developer Pipeline
	Orchestration and
the Developer Culture
	Map of the Kubernetes Ecosystem
	Kubernetes 1.7
and Extensibility
	Plotting the
Kubernetes Roadmap
	An Overview of Kubernetes and Orchestration
	SponsorS
	Introduction
	User Experience Survey
	Kubernetes
	solutions directory
	Kubernetes
Distributions
	Tools
and Services
	Relevant DevOps Technologies
	Relevant Infrastructure Technologies
	Disclosures

